Normen und Metriken: Unterschied zwischen den Versionen

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen
 
(103 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Eine '''Norm''' ist eine Abbildung, die auf einem Vektorraum definiert ist und jedem Objekt in diesem Vektorraum eine reelle Zahl zuordnet, die die Größe des Objekts beschreiben soll. Eine '''Metrik''' ist auf einer Menge definiert und ordnet je zwei Punkten eine reelle Zahl zu, die gewissermaßen den Abstand der Punkte abgibt.
+
Eine '''Norm''' ist eine Abbildung, die auf einem Vektorraum definiert ist und jedem Objekt in diesem Vektorraum eine reelle Zahl zuordnet, die die Größe des Objekts beschreiben soll. Eine '''Metrik''' ist auf einer Menge definiert und ordnet je zwei Punkten eine reelle Zahl zu, die gewissermaßen den Abstand der Punkte angibt.
  
'''Normen und Metriken''' sind nicht eindeutig auf dem Vektorraum bzw. der Menge definiert und so ist es durchaus möglich, dass bspw. unterschiedliche Normen dem gleichen Objekt eine andere Größe zuordnen. Dennoch erfüllen Normen und Metriken drei definierende Eigenschaften, und grundlegende Konzepte wie bspw. Konvergenz sind unabhängig von der gewählten Norm bzw. Metrik
+
'''Normen und Metriken''' sind nicht eindeutig auf dem Vektorraum beziehungsweise der Menge definiert und so ist es durchaus möglich, dass beispielsweise unterschiedliche Normen dem gleichen Objekt eine andere Größe zuordnen. Dennoch erfüllen Normen und Metriken drei definierende Eigenschaften, und grundlegende Konzepte wie beispielsweise Konvergenz sind unabhängig von der gewählten Norm beziehungsweise Metrik.
  
  
 
== Motivation ==
 
== Motivation ==
Unser Ziel ist es, mathematischen Objekten eine gewisse Größe und einen gewissen Abstand zuzuordnen. Aus den reellen Zahlen kennen wir bereits den Absolutbetrag und die absolute Differenz. Dieses Konzept möchten wir abstrahieren und so allgemein wie möglich formulieren, sprich auch einen Abstands- und Größenbegriff für Vektorräume oder idealerweise allgemeine Mengen definieren. Den Größenbegriff werden wir dann als Norm bezeichnen, den Abstandsbegriff als Metrik.
+
Unser Ziel ist es Objekten in einem Raum eine gewisse Größe und einen gewissen Abstand zuzuordnen. Aus den reellen Zahlen kennen wir bereits den Absolutbetrag und die absolute Differenz. Dieses Konzept möchten wir abstrahieren und so allgemein wie möglich formulieren, sprich auch einen Abstands- und Größenbegriff für Vektorräume oder idealerweise allgemeine Mengen definieren. Den Größenbegriff werden wir dann als Norm bezeichnen, den Abstandsbegriff als Metrik.
  
Wir werden feststellen, dass wir Normen auf vielen Vektorräumen definieren können und somit einen Größenbegriff für bspw. Vektoren und Matrizen, aber auch für weniger intuitive Dinge wie Funktionen erhalten. Metriken können wir sogar auf allgemeinen Mengen definieren, ohne eine Vektorraumstruktur zu benötigen.  
+
Wir werden feststellen, dass wir Normen auf vielen Vektorräumen definieren können und somit einen Größenbegriff, beispielsweise für Vektoren und Matrizen, aber auch für weniger intuitive Dinge wie Funktionen, erhalten. Metriken können wir sogar auf allgemeinen Mengen definieren, ohne eine Vektorraumstruktur zu benötigen.  
  
 
== Norm ==
 
== Norm ==
Zeile 40: Zeile 40:
  
 
=== Äquivalenz von Normen ===
 
=== Äquivalenz von Normen ===
Zwei Normen sind äquivalent, wenn eine Norm durch die andere nach oben und unten abgeschätzt werden kann,
+
Zwei Normen <math>\|\cdot\|_a </math> und <math>\|\cdot\|_b </math> sind äquivalent, wenn eine Norm durch die andere nach oben und unten abgeschätzt werden kann, das heißt:
  
es gibt also zwei positive Konstanten <math>c_1</math> und <math>c_2</math> gibt, sodass für alle <math>x \in V</math> folgendes gilt:  
+
es gibt zwei positive Konstanten <math>c_1</math> und <math>c_2</math>, sodass für alle <math>x \in V</math> folgendes gilt:  
  
 
: <math>c_1 \|x\|_b\leq \|x\|_a\leq c_2 \|x\|_b</math>
 
: <math>c_1 \|x\|_b\leq \|x\|_a\leq c_2 \|x\|_b</math>
 +
In endlichdimensionalen Vektorräumen gilt, dass alle Normen äquivalent sind. Somit ist der Konvergenzbegriff in endlichdimensionalen Vektorräumen unabhängig von der gewählten Norm. Andere Konzepte müsssen nicht unabhängig von der Norm sein, so ist beispielsweise eine Kontraktion bezüglich einer Norm nicht zwingend eine Kontraktion unter einer anderen.
  
 
== Metrik ==
 
== Metrik ==
 
=== Definition ===
 
=== Definition ===
Sei <math>X</math> eine Menge. Eine Abbildung <math>d\colon X\times X\to \mathbb{R}</math> heißt Metrik auf <math>X</math>, falls folgenden Eigenschaften für beliebige <math>x</math>, <math>y</math> und <math>z</math> von <math>X</math> gelten:
+
Sei <math>X</math> eine Menge. Eine Abbildung <math>d\colon X\times X\to \mathbb{R}</math> heißt Metrik auf <math>X</math>, falls folgenden Eigenschaften für beliebige <math>x</math>, <math>y</math> und <math>z</math> aus <math>X</math> gelten:
 
{|
 
{|
| '''M1''' Positive Definitheit: || <math>d\left(x,y\right) \geq 0</math> &nbsp; &nbsp; und &nbsp; &nbsp; <math>d\left(x,y\right) = 0 \Leftrightarrow x = y</math>,
+
| style="width:20em;" |'''M1''' Positive Definitheit:                                     || <math>d\left(x,y\right) \geq 0</math> &nbsp; &nbsp; und &nbsp; &nbsp; <math>d\left(x,y\right) = 0 \Leftrightarrow x = y</math>,
 
|-
 
|-
| '''M2''' Symmetrie:  || <math>d\left(x,y\right) = d(y,x)</math>,
+
| |'''M2''' Symmetrie:  || <math>d\left(x,y\right) = d(y,x)</math>,
 
|-
 
|-
| '''M3''' Dreiecksungleichung:  || <math>d\left(x,y\right) \leq d(x,z) + d(z,y)</math>.
+
| |'''M3''' Dreiecksungleichung:  || <math>d\left(x,y\right) \leq d(x,z) + d(z,y)</math>.
 
|}
 
|}
  
das Paar (<math>X</math>,d) nennt man '''metrischer Raum'''.  
+
Das Paar (<math>X</math>,d) nennt man '''metrischer Raum'''.
 +
 
 
===Bemerkung===
 
===Bemerkung===
Für eine Metrik <math>d</math> gilt stets:
+
Für eine Metrik <math>d</math> kann folgende Bedingung auch weggelassen werden:
 
   
 
   
 
<math>d(x,y)\geq0</math>
 
<math>d(x,y)\geq0</math>
{| class="wikitable left mw-collapsible mw-collapsed font-size: 100%;"
 
| style="text-align:left; font-size: 100%;" | '''Beweis'''&nbsp;&nbsp;
 
|-
 
| Sei <math>X</math> eine Menge und <math>d</math> eine Metrik so gilt für alle <math>x</math>,<math>y</math> aus <math>X</math>:
 
  
 +
Da aus [[#Metrik|M1]] (2. Teil), [[#Metrik|M2]] und [[#Metrik|M3]] folgendes gilt:
 
: <math>0 = \frac{1}{2} d(x, x) \leq \frac{1}{2}(d(x, y) + d(y, x)) = \frac{1}{2}(d(x, y) + d(x, y)) = d(x, y).</math>
 
: <math>0 = \frac{1}{2} d(x, x) \leq \frac{1}{2}(d(x, y) + d(y, x)) = \frac{1}{2}(d(x, y) + d(x, y)) = d(x, y).</math>
 
+
{|
'''qed.'''
 
  
 
|}
 
|}
Zeile 75: Zeile 73:
 
==Zusammenhang von Norm und Metrik ==
 
==Zusammenhang von Norm und Metrik ==
  
In den reellen Zahlen wird bekanntermaßen der Absolutbetrag einer Zahl als Abstand der Zahl von 0 definiert, sprich  
+
In den reellen Zahlen wird bekanntermaßen der Absolutbetrag einer Zahl als Abstand der Zahl zur 0 definiert, sprich:
 
:<math> |x| = \begin{cases} x & \text{falls}\ x \geq 0 \\ -x & \text{falls}\ x < 0 \end{cases}\  , \ x \in \mathbb{R} </math>,
 
:<math> |x| = \begin{cases} x & \text{falls}\ x \geq 0 \\ -x & \text{falls}\ x < 0 \end{cases}\  , \ x \in \mathbb{R} </math>,
die absolute Differenz durch
+
Die absolute Differenz ist definiert als:
 
:<math> d(x,y) = |x-y| , \ \ x,y \in \mathbb{R} </math>.
 
:<math> d(x,y) = |x-y| , \ \ x,y \in \mathbb{R} </math>.
Dass der Absolutbetrag somit auch in der Definition unseres Abstandes in den reellen Zahlen vorkommt, legt bereits nahe, dass Normen und Metriken nicht zwei zusammenhangslose Konzepte sind, sondern, dass es eine Verbindung zwischen ihnen gibt und tatsächlichen werden wir sehen, dass sehr viele Metriken durch zugrundeliegende Normen definiert werden können ("von Normen induziert werden").
+
Dass der Absolutbetrag somit auch in der Definition unseres Abstandes in den reellen Zahlen vorkommt, legt bereits nahe, dass Normen und Metriken nicht zwei zusammenhangslose Konzepte sind, sondern dass es eine Verbindung zwischen ihnen gibt und tatsächlich werden wir sehen, dass sehr viele Metriken durch zugrundeliegende Normen definiert werden können ("von Normen induziert werden").
  
 
=== Induzierte Metriken ===
 
=== Induzierte Metriken ===
Zeile 92: Zeile 90:
 
'''M3''' <math> d(x,z) = \left\Vert x - z \right\Vert = \left\Vert x - y + y - z \right\Vert \le \left\Vert x - y \right\Vert + \left\Vert y - z \right\Vert = d(x,y)+d(y,z) </math>
 
'''M3''' <math> d(x,z) = \left\Vert x - z \right\Vert = \left\Vert x - y + y - z \right\Vert \le \left\Vert x - y \right\Vert + \left\Vert y - z \right\Vert = d(x,y)+d(y,z) </math>
  
Somit besitzt jeder normierte Vektorraum auch eine Metrik, ist also auch ein normierter Raum.
+
Somit besitzt jeder normierte Vektorraum auch eine Metrik, ist also auch ein metrischer Raum.
  
Im Gegensatz dazu, ist nicht jeder normierte Vektorraum auch ein metrischer Raum, [https://funfacts.mathi.uni-heidelberg.de/index.php/Normen_und_Metriken#Nicht_durch_Normen_induzierte_Metriken s. Beispiele]
+
Im Gegensatz dazu, ist nicht jeder metrische Vektorraum auch ein normierter Vektorraum, [https://funfacts.mathi.uni-heidelberg.de/index.php/Normen_und_Metriken#Nicht_durch_Normen_induzierte_Metriken s. Beispiele]
  
 
== Hierarchie Topologischer Räume ==
 
== Hierarchie Topologischer Räume ==
[[Datei:1200px-Beziehungen zwischen mathematischen Räumen.svg.png|mini|500x500px|Hierarchie topologischer Räume]]
+
[[Datei:1200px-Beziehungen zwischen mathematischen Räumen.svg.png|mini|253x253px|Hierarchie topologischer Räume]]
Wie gesehen, ist induziert jede Norm eine Metrik, somit ist jeder normierte Vektorraum auch ein metrischer Raum. Analog dazu induziert jedes Skalarprodukt <math> (\cdot,\cdot) </math> eine Norm via <math> \left\Vert v \right\Vert = \sqrt{(v.v)} </math>.  
+
Wie gesehen, induziert jede Norm eine Metrik, somit ist jeder normierte Vektorraum auch ein metrischer Raum. Analog dazu induziert jedes Skalarprodukt <math> (\cdot,\cdot) </math> eine Norm via <math> \left\Vert v \right\Vert = \sqrt{(v.v)} </math>.  
 
Außerdem induziert jede Metrik auf dem metrischen Raum  <math> (M,d) </math> eine Topologie via <math> \ \mathcal{O} := \{U \subset M, U\ \text{ist offen bzgl.}\ d\}. </math>
 
Außerdem induziert jede Metrik auf dem metrischen Raum  <math> (M,d) </math> eine Topologie via <math> \ \mathcal{O} := \{U \subset M, U\ \text{ist offen bzgl.}\ d\}. </math>
Somit erhält man die folgende Hierarchie metrischer Räume:
+
Somit erhält man die folgende Hierarchie von Räumen:
  
 
== Metrik Beispiele ==
 
== Metrik Beispiele ==
 
=== Durch Normen induzierte Metriken ===
 
=== Durch Normen induzierte Metriken ===
 
Jede Norm die es auf einem Vektorraum gibt induziert wie folgt eine Metrik  
 
Jede Norm die es auf einem Vektorraum gibt induziert wie folgt eine Metrik  
:<math>d(x, y) \equiv \|x - y\|</math>
+
:<math>d(x, y) := \|x - y\|</math>
  
Daher sehen wir, dass jeder normierte VR ein metrischer Raum ist.  
+
Daher sehen wir, dass jeder normierte Vektorraum ein metrischer Raum ist.  
 
:Ein weiteres Beispiel ist:
 
:Ein weiteres Beispiel ist:
 
[[Datei:Satz des Pythagoras.svg.png|mini|160x160px|Satz des Pythagoras]]
 
[[Datei:Satz des Pythagoras.svg.png|mini|160x160px|Satz des Pythagoras]]
==== Die euklidische Metrik ====
+
=== Die euklidische Metrik ===
 
In der zweidimensionalen euklidischen Ebene stimmt der euklidische Abstand <math>d(x,y)</math> mit dem gängigen Gedanken des Abstandes überein.  
 
In der zweidimensionalen euklidischen Ebene stimmt der euklidische Abstand <math>d(x,y)</math> mit dem gängigen Gedanken des Abstandes überein.  
  
Zeile 117: Zeile 115:
  
 
: <math>d(x,y) = \|x-y\|_2 =\sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2} = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}</math>
 
: <math>d(x,y) = \|x-y\|_2 =\sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2} = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}</math>
Dies kennen wir aus der Schulmathematik für n=2 als Satz des Phythagoras.
+
Der Satz des Phytagoras stellte eine Formel für den Abstandsbegriff in dem kartesischen Koordinatensystem, beispielsweise im n=2 kann man sich die Berechnung des Abstandes wie ein Rechtwinkliges Dreieck vorstellen, durch: <math>c = \sqrt{(x_1-x_0)^2 + (y_1-y_0)^2}</math> wobei <math>c</math> den Abstand zwischen den Punkten <math>(x_0,y_0), (x_1,y_1)</math> darstellt. Im Bild rechts könnte man sich die Strecken <math>x_1-x_0</math> und <math>y_1-y_0</math> als a und b vorstellen und den berechneten Abstand <math>c</math> als c.
Der euklidische Abstand ist eine Metrischer Raum welcher die Dreiecksungleichung erfüllt und die Axiome einer Norm erfüllt, somit durch eine Norm induziert.
+
Der euklidische Abstand ist eine Metrik welche die Dreiecksungleichung erfüllt. Die Axiome einer Norm werden ebenfalls erfüllt, somit wird es folglich durch eine Norm induziert, welche man auch die euklidische Norm nennt.
  
 
=== Nicht durch Normen induzierte Metriken ===
 
=== Nicht durch Normen induzierte Metriken ===
Es gibt Metriken welche nicht die Axiome N1-N3 einer Norm nicht erfüllen ein Beispiel hierfür ist folgende Metrik welche das Axiom N2 nicht erfüllt:
+
Es gibt Metriken welche die Axiome [[#Norm|N1-N3]] einer Norm nicht erfüllen ein Beispiel hierfür ist folgende Metrik welche das Axiom [[#Norm|N2]] nicht erfüllt:
====Die Diskrete Metrik====
+
 
Auf jeder menge lässt sich die triviale Metrik definieren, sie wird auch diskrete Metrik gennant und ist dazu noch eine Ultrametrik.
+
===Die Diskrete Metrik===
:Sie wird wie folgt definiert:
+
Auf jeder Menge lässt sich die triviale Metrik definieren. Sie wird auch diskrete Metrik gennant und ist dazu noch eine [[#Ultrametrik|Ultrametrik]].
 +
Sie wird wie folgt definiert:
 
:Sei <math>X</math> eine Menge, <math>x</math>,<math>y</math> aus <math>X</math> und <math>d</math> eine Abbildung <math> d\colon X\times X\to\mathbb R </math> mit  
 
:Sei <math>X</math> eine Menge, <math>x</math>,<math>y</math> aus <math>X</math> und <math>d</math> eine Abbildung <math> d\colon X\times X\to\mathbb R </math> mit  
 
:<math>d(x,y)=\begin{cases}
 
:<math>d(x,y)=\begin{cases}
Zeile 132: Zeile 131:
 
Diese Metrik induziert die diskrete Topologie.
 
Diese Metrik induziert die diskrete Topologie.
  
Ein weiteres Beispiel, welche nicht alle Axiome einer Norm erfüllt, ist die:
+
Die diskrete Metrik wird nicht durch eine Norm induziert, denn
====Die SNCF-Metrik====
+
betrachtet man den Punkt [[#Norm|N2]] einer Norm so sieht man:
 +
 
 +
Sei <math>\| x \|=d(x,0)</math> und sei <math>x</math> ungleich 0 so ist,
 +
 +
<math>\| 2x \|=d(2x,0)=1≠2=2d(x,0)=|2|\| x \|</math>
 +
 
 +
Also kann die diskrete Metrik nicht durch eine Norm induziert werden.
 +
 
 +
 
 +
Ein weiteres Beispiel, welches nicht alle Axiome einer Norm erfüllt, ist die:
 +
 
 +
===Die SNCF-Metrik===
 
[[Datei:French railway network 1856.png|mini|alternativtext=|158x158px|Französisches Bahnnetz 1856]]
 
[[Datei:French railway network 1856.png|mini|alternativtext=|158x158px|Französisches Bahnnetz 1856]]
 
Sei <math>X</math> eine Menge von Punkten in der Ebene und <math> p </math> ein fester Punkt.
 
Sei <math>X</math> eine Menge von Punkten in der Ebene und <math> p </math> ein fester Punkt.
Zeile 149: Zeile 159:
 
Der Name dieser Metrik leitet sich von der Eisenbahngesellschaft SNCF ab, da diese Metrik in den Kontext des Französischen Eisenbahnnetzes fällt.  
 
Der Name dieser Metrik leitet sich von der Eisenbahngesellschaft SNCF ab, da diese Metrik in den Kontext des Französischen Eisenbahnnetzes fällt.  
 
Nehme man an X seien die Städte Frankreichs, und <math> p </math> Paris so kann der Abstand, falls es keinen direkt Zug zwischen der Stadt <math>x</math> und <math>y</math> gibt, deutlich länger werden.
 
Nehme man an X seien die Städte Frankreichs, und <math> p </math> Paris so kann der Abstand, falls es keinen direkt Zug zwischen der Stadt <math>x</math> und <math>y</math> gibt, deutlich länger werden.
 +
 +
 +
Die SNCF-Metrik wird nicht von einer Norm induziert, denn wäre dem so, würde diese Norm die folgende Gleichung erfüllen:
 +
: <math> \| x \| = d(x,0) </math>.
 +
 +
Es ist jedoch, falls <math> p </math> nicht auf einer Geraden durch <math> 0 </math> und  <math> x </math> liegt (und damit auch nicht <math> 0 </math> ist)
 +
: <math> d(x,0) = \| x-p \| + \| p \| \neq \| x \| </math>.
 +
Deshalb gibt es keine Norm, die die SNCF-Metrik induziert.
  
 
== Spezielle Metriken ==
 
== Spezielle Metriken ==
 
=== Ultrametrik ===
 
=== Ultrametrik ===
Eine Metrik nennt man Ultrametrik falls bei der '''M3''' Dreiecksungleichung gilt, dass der Abstand <math>d(x, y)</math> nicht länger ist als der längere der beiden Abstände <math>d(x, z)</math> und <math>d(z, y)</math> ist und das mit beliebigem <math>z</math>. Beispielsweise die Diskrete Metrik.
+
Eine Metrik nennt man Ultrametrik falls bei der [[#Metrik|M3]] Dreiecksungleichung gilt, dass der Abstand <math>d(x, y)</math> nicht länger ist als der längere der beiden Abstände <math>d(x, z)</math> und <math>d(z, y)</math> und das mit beliebigem <math>z</math>. Beispielsweise ist die diskrete Metrik eine Ultrametrik.
  
 
=== Pseudometrik ===
 
=== Pseudometrik ===
Stellt eine Metrik dar in welcher die Bedingung aus '''M1''' <math>d\left(x,y\right) = 0 \Rightarrow x = y</math> nicht gilt, somit ist sie positive semidefinit. Sie wird in der Funtkionalanalysis auch als Halb- oder Semimetrik bezeichnet.
+
Eine Pseudometrik ist eine Metrik in welcher die Bedingung aus [[#Metrik|M1]] <math>d\left(x,y\right) = 0 \Rightarrow x = y</math> nicht gilt, somit ist sie positiv semidefinit. Sie wird in der Funtkionalanalysis auch als Halb- oder Semimetrik bezeichnet.
  
 
=== Nicht-archimedische Metriken ===
 
=== Nicht-archimedische Metriken ===
Hier wird die '''M3''' Dreiecksungleichung verstärkt oder geschwächt. Ein Beispiel für diese Metrik wäre die Ultrametrik.
+
Hier wird die [[#Metrik|M3]] Dreiecksungleichung verstärkt oder geschwächt. Ein Beispiel für diese Metrik wäre die Ultrametrik.
  
 
=== Quasimetrik ===
 
=== Quasimetrik ===
Verzichtet man auf '''M2''' (Symmetrie) der Axiome so erhält man eine Quasimetrik. Eine Quasimetrik <math>b</math> erzeugt durch <math>d(x,y):= \tfrac{1}{2} ( b(x,y) + b(y,x) )</math> eine Metrik auf <math>X</math>.
+
Verzichtet man auf [[#Metrik|M2]] (Symmetrie) der Axiome so erhält man eine Quasimetrik. Eine Quasimetrik <math>b</math> erzeugt durch <math>d(x,y):= \tfrac{1}{2} ( b(x,y) + b(y,x) )</math> eine Metrik auf <math>X</math>.
  
 
=== Prämetrik ===
 
=== Prämetrik ===
Die Prämetrik fordert nur das Axiom '''M1''' (Positive Definitheit).
+
Die Prämetrik fordert nur das Axiom [[#Metrik|M1]] (Positive Definitheit).
  
 
== Norm Beispiele ==
 
== Norm Beispiele ==
Zeile 201: Zeile 219:
 
: <math>\| x \|_1 = \sum_{i=1}^n | x_i |</math>
 
: <math>\| x \|_1 = \sum_{i=1}^n | x_i |</math>
  
==== Äquivalenz von Normen in endlichdimensionalen Räumen ====
+
==== p-Normen ====
 +
[[Datei:P Norm-1.jpg|mini|Beweis N3]]
 +
Man kann für jedes reelles <math>1 \leq p < \infty</math> die <math>p</math>-Norm eines Vektors, durch
 +
 
 +
: <math>\| x \|_p = \left(\sum_{i=1}^n | x_i |^p\right)^{1/p}</math>, definieren
 +
 
 +
Wählt man <math>p=1</math> erhält man so die Summennorm, für <math>p=2</math> die euklidische Norm und für <math>p\to\infty</math> die Maximumsnorm.
 +
 
 +
{| class="wikitable left mw-collapsible mw-collapsed font-size: 100%;"
 +
| style="text-align:left; font-size: 100%;" | '''Beweis'''&nbsp;&nbsp;
 +
|-
 +
| zu zeigen: Die p-Norm ist eine Norm
 +
'''N1'''
 +
: <math>\| x \|_p = 0 \; \Leftrightarrow \; \left(\sum_{i=1}^n | x_i |^p\right)^{1/p} \!\!\!\!\! = 0 \; \Rightarrow \; \sum_{i=1}^n | x_i |^p = 0 \; \Rightarrow \; x = 0</math>
 +
'''N2'''
 +
: <math>\| \alpha \, x \|_p = \left( \sum_{i=1}^n | \alpha \, x_i |^p \right)^{1/p} \!\!\!\!\! = \left( \sum_{i=1}^n | \alpha |^p \, | x_i |^p \right)^{1/p} \!\!\!\!\! = | \alpha | \, \left( \sum_{i=1}^n | x_i |^p \right)^{1/p} \!\!\!\!\! = | \alpha | \, \| x \|_p</math>
 +
'''N3'''
 +
siehe Bild rechts
 +
|}
  
 
=== Normen auf unendlichdimensionalen Vektorräumen ===
 
=== Normen auf unendlichdimensionalen Vektorräumen ===
  
=== Operatornorm ===
+
==== Supremumsnorm ====
 +
Die Supremumsnorm einer beschränkten Funktion ist definiert als
 +
 
 +
: <math>\ \| f \|_{\sup} = \| f \|_{\infty} = \sup_{x \in \Omega} | f(x) |</math>.
 +
 
 +
==== Operatornorm ====
 
Seien V und W Vektorräume und sei <math>f\colon V \rightarrow W</math> eine lineare Abbildung. Dann ist die Operatornorm definiert als:
 
Seien V und W Vektorräume und sei <math>f\colon V \rightarrow W</math> eine lineare Abbildung. Dann ist die Operatornorm definiert als:
  
Zeile 215: Zeile 256:
 
== Quellen ==
 
== Quellen ==
 
{| style="margin-left: 2em"
 
{| style="margin-left: 2em"
 +
| | https://mampf.mathi.uni-heidelberg.de/mediaforward/medium/27133/manuscript/fd7cf1a2d8b9bc5e9308ef865851e377.pdf/Analysis2-Skript-gesamt.pdf
 
|-
 
|-
| https://mampf.mathi.uni-heidelberg.de/mediaforward/medium/27208/manuscript/adf9e7b00ee4803a0e865168bab3fe67.pdf/Metriken_Normen%20.pdf#page=2
+
| | https://mampf.mathi.uni-heidelberg.de/mediaforward/medium/27208/manuscript/adf9e7b00ee4803a0e865168bab3fe67.pdf/Metriken_Normen%20.pdf#page=2
 
|-
 
|-
 
| | https://de.wikipedia.org/wiki/Französische_Eisenbahnmetrik
 
| | https://de.wikipedia.org/wiki/Französische_Eisenbahnmetrik
Zeile 225: Zeile 267:
 
|-
 
|-
 
| | https://de.wikipedia.org/wiki/Norm_(Mathematik)
 
| | https://de.wikipedia.org/wiki/Norm_(Mathematik)
 +
|-
 +
| | http://kulla.me/de/artikel/zusammenfassung_topologie/
 +
|-
 +
| | https://mampf.mathi.uni-heidelberg.de/mediaforward/medium/26788/manuscript/12bc7adbe55f813bc35d48c3e4ea7b5f.pdf/Analysis2-Video1-Metrische-Räume-Konvergenz-doppelseitig.pdf
 
|}
 
|}
  
 
== Autoren ==
 
== Autoren ==
 
  Arian Gjini, Alassane Diagne, Robin Klotzbücher
 
  Arian Gjini, Alassane Diagne, Robin Klotzbücher

Aktuelle Version vom 8. Oktober 2021, 19:11 Uhr

Eine Norm ist eine Abbildung, die auf einem Vektorraum definiert ist und jedem Objekt in diesem Vektorraum eine reelle Zahl zuordnet, die die Größe des Objekts beschreiben soll. Eine Metrik ist auf einer Menge definiert und ordnet je zwei Punkten eine reelle Zahl zu, die gewissermaßen den Abstand der Punkte angibt.

Normen und Metriken sind nicht eindeutig auf dem Vektorraum beziehungsweise der Menge definiert und so ist es durchaus möglich, dass beispielsweise unterschiedliche Normen dem gleichen Objekt eine andere Größe zuordnen. Dennoch erfüllen Normen und Metriken drei definierende Eigenschaften, und grundlegende Konzepte wie beispielsweise Konvergenz sind unabhängig von der gewählten Norm beziehungsweise Metrik.


Motivation

Unser Ziel ist es Objekten in einem Raum eine gewisse Größe und einen gewissen Abstand zuzuordnen. Aus den reellen Zahlen kennen wir bereits den Absolutbetrag und die absolute Differenz. Dieses Konzept möchten wir abstrahieren und so allgemein wie möglich formulieren, sprich auch einen Abstands- und Größenbegriff für Vektorräume oder idealerweise allgemeine Mengen definieren. Den Größenbegriff werden wir dann als Norm bezeichnen, den Abstandsbegriff als Metrik.

Wir werden feststellen, dass wir Normen auf vielen Vektorräumen definieren können und somit einen Größenbegriff, beispielsweise für Vektoren und Matrizen, aber auch für weniger intuitive Dinge wie Funktionen, erhalten. Metriken können wir sogar auf allgemeinen Mengen definieren, ohne eine Vektorraumstruktur zu benötigen.

Norm

Definition

Eine Norm ist eine Abbildung [math]\|\cdot\|[/math] von einem Vektorraum [math]V[/math] über dem Körper [math]\mathbb K[/math] der reellen oder komplexen Zahlen in die Menge der nichtnegativen reellen Zahlen [math]{\mathbb R}_0^{+}[/math],

[math]\|\cdot\|\colon V\to{\mathbb R}_0^{+}, \; x \mapsto \| x \|[/math],

welche die folgenden Axiome für alle Vektoren [math]x, y\in V[/math] und alle Skalare [math]\alpha\in\mathbb K[/math] erfüllt:

N1 Definitheit: [math]\|x\| = 0 \;\Rightarrow\; x = 0[/math],
N2 Homogenität: [math]\|\alpha\cdot x\| = |\alpha|\cdot\|x\|[/math],
N3 Dreiecksungleichung: [math]\|x + y\| \leq \|x\| + \|y\|[/math].

Grundlegende Eigenschaften

Aus der Homogenität folgt:

[math]x = 0 \;\Rightarrow\; \| x \| = 0[/math]

Zusammen mit der Definitheit gilt also, dass ein Vektor genau dann die Norm Null hat, wenn er der Nullvektor ist.

Die Symmetrie bezüglich Vorzeichen folgt ebenfalls aus der Definitheit durch Einsetzen von [math]\alpha = -1[/math]:

[math]\| {-x} \| = \| x \|[/math]   und damit   [math]\| x-y \| = \| y-x \|[/math]

Mithilfe der der Dreiecksungleichung folgt dann: Setze [math]y = -x[/math],

[math]0= \|x + (-x)\| \leq \|x\| + \|-x\| = 2\| x \| \;\Rightarrow\; \| x \| \geq 0 [/math], also eine Norm ist immer nichtnegativ

Äquivalenz von Normen

Zwei Normen [math]\|\cdot\|_a [/math] und [math]\|\cdot\|_b [/math] sind äquivalent, wenn eine Norm durch die andere nach oben und unten abgeschätzt werden kann, das heißt:

es gibt zwei positive Konstanten [math]c_1[/math] und [math]c_2[/math], sodass für alle [math]x \in V[/math] folgendes gilt:

[math]c_1 \|x\|_b\leq \|x\|_a\leq c_2 \|x\|_b[/math]

In endlichdimensionalen Vektorräumen gilt, dass alle Normen äquivalent sind. Somit ist der Konvergenzbegriff in endlichdimensionalen Vektorräumen unabhängig von der gewählten Norm. Andere Konzepte müsssen nicht unabhängig von der Norm sein, so ist beispielsweise eine Kontraktion bezüglich einer Norm nicht zwingend eine Kontraktion unter einer anderen.

Metrik

Definition

Sei [math]X[/math] eine Menge. Eine Abbildung [math]d\colon X\times X\to \mathbb{R}[/math] heißt Metrik auf [math]X[/math], falls folgenden Eigenschaften für beliebige [math]x[/math], [math]y[/math] und [math]z[/math] aus [math]X[/math] gelten:

M1 Positive Definitheit: [math]d\left(x,y\right) \geq 0[/math]     und     [math]d\left(x,y\right) = 0 \Leftrightarrow x = y[/math],
M2 Symmetrie: [math]d\left(x,y\right) = d(y,x)[/math],
M3 Dreiecksungleichung: [math]d\left(x,y\right) \leq d(x,z) + d(z,y)[/math].

Das Paar ([math]X[/math],d) nennt man metrischer Raum.

Bemerkung

Für eine Metrik [math]d[/math] kann folgende Bedingung auch weggelassen werden:

[math]d(x,y)\geq0[/math]

Da aus M1 (2. Teil), M2 und M3 folgendes gilt:

[math]0 = \frac{1}{2} d(x, x) \leq \frac{1}{2}(d(x, y) + d(y, x)) = \frac{1}{2}(d(x, y) + d(x, y)) = d(x, y).[/math]

Zusammenhang von Norm und Metrik

In den reellen Zahlen wird bekanntermaßen der Absolutbetrag einer Zahl als Abstand der Zahl zur 0 definiert, sprich:

[math] |x| = \begin{cases} x & \text{falls}\ x \geq 0 \\ -x & \text{falls}\ x \lt 0 \end{cases}\ , \ x \in \mathbb{R} [/math],

Die absolute Differenz ist definiert als:

[math] d(x,y) = |x-y| , \ \ x,y \in \mathbb{R} [/math].

Dass der Absolutbetrag somit auch in der Definition unseres Abstandes in den reellen Zahlen vorkommt, legt bereits nahe, dass Normen und Metriken nicht zwei zusammenhangslose Konzepte sind, sondern dass es eine Verbindung zwischen ihnen gibt und tatsächlich werden wir sehen, dass sehr viele Metriken durch zugrundeliegende Normen definiert werden können ("von Normen induziert werden").

Induzierte Metriken

Es sei [math] \left\Vert \cdot \right\Vert [/math] eine Norm auf einem Vektorraum. Dann definiert [math] d(x, y) := \left\Vert x - y \right\Vert [/math] eine Metrik.

Beweis

M1 [math] d(x,y) = 0 \Leftrightarrow \left\Vert x - y \right\Vert = 0 \Leftrightarrow x-y = 0 \Leftrightarrow x = y [/math]

M2 [math] d(x,y) = \left\Vert x - y \right\Vert = \left\Vert (-1)(y-x) \right\Vert = \left\vert -1 \right\vert \left\Vert y-x \right\Vert = d(y,x) [/math]

M3 [math] d(x,z) = \left\Vert x - z \right\Vert = \left\Vert x - y + y - z \right\Vert \le \left\Vert x - y \right\Vert + \left\Vert y - z \right\Vert = d(x,y)+d(y,z) [/math]

Somit besitzt jeder normierte Vektorraum auch eine Metrik, ist also auch ein metrischer Raum.

Im Gegensatz dazu, ist nicht jeder metrische Vektorraum auch ein normierter Vektorraum, s. Beispiele

Hierarchie Topologischer Räume

Hierarchie topologischer Räume

Wie gesehen, induziert jede Norm eine Metrik, somit ist jeder normierte Vektorraum auch ein metrischer Raum. Analog dazu induziert jedes Skalarprodukt [math] (\cdot,\cdot) [/math] eine Norm via [math] \left\Vert v \right\Vert = \sqrt{(v.v)} [/math]. Außerdem induziert jede Metrik auf dem metrischen Raum [math] (M,d) [/math] eine Topologie via [math] \ \mathcal{O} := \{U \subset M, U\ \text{ist offen bzgl.}\ d\}. [/math] Somit erhält man die folgende Hierarchie von Räumen:

Metrik Beispiele

Durch Normen induzierte Metriken

Jede Norm die es auf einem Vektorraum gibt induziert wie folgt eine Metrik

[math]d(x, y) := \|x - y\|[/math]

Daher sehen wir, dass jeder normierte Vektorraum ein metrischer Raum ist.

Ein weiteres Beispiel ist:
Satz des Pythagoras

Die euklidische Metrik

In der zweidimensionalen euklidischen Ebene stimmt der euklidische Abstand [math]d(x,y)[/math] mit dem gängigen Gedanken des Abstandes überein.

Sind die Punkte [math]x[/math] und [math]y[/math] durch [math]x=(x_1, \ldots, x_n)[/math] und [math]y=(y_1, \ldots, y_n)[/math] gegeben, so definieren wir die euklidische Metrik wie folgt:

[math]d(x,y) = \|x-y\|_2 =\sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2} = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}[/math]

Der Satz des Phytagoras stellte eine Formel für den Abstandsbegriff in dem kartesischen Koordinatensystem, beispielsweise im n=2 kann man sich die Berechnung des Abstandes wie ein Rechtwinkliges Dreieck vorstellen, durch: [math]c = \sqrt{(x_1-x_0)^2 + (y_1-y_0)^2}[/math] wobei [math]c[/math] den Abstand zwischen den Punkten [math](x_0,y_0), (x_1,y_1)[/math] darstellt. Im Bild rechts könnte man sich die Strecken [math]x_1-x_0[/math] und [math]y_1-y_0[/math] als a und b vorstellen und den berechneten Abstand [math]c[/math] als c. Der euklidische Abstand ist eine Metrik welche die Dreiecksungleichung erfüllt. Die Axiome einer Norm werden ebenfalls erfüllt, somit wird es folglich durch eine Norm induziert, welche man auch die euklidische Norm nennt.

Nicht durch Normen induzierte Metriken

Es gibt Metriken welche die Axiome N1-N3 einer Norm nicht erfüllen ein Beispiel hierfür ist folgende Metrik welche das Axiom N2 nicht erfüllt:

Die Diskrete Metrik

Auf jeder Menge lässt sich die triviale Metrik definieren. Sie wird auch diskrete Metrik gennant und ist dazu noch eine Ultrametrik. Sie wird wie folgt definiert:

Sei [math]X[/math] eine Menge, [math]x[/math],[math]y[/math] aus [math]X[/math] und [math]d[/math] eine Abbildung [math] d\colon X\times X\to\mathbb R [/math] mit
[math]d(x,y)=\begin{cases} 0 & \text{für } x = y \\ 1 & \text{für } x\neq y \end{cases}[/math]

Diese Metrik induziert die diskrete Topologie.

Die diskrete Metrik wird nicht durch eine Norm induziert, denn betrachtet man den Punkt N2 einer Norm so sieht man:

Sei [math]\| x \|=d(x,0)[/math] und sei [math]x[/math] ungleich 0 so ist,

[math]\| 2x \|=d(2x,0)=1≠2=2d(x,0)=|2|\| x \|[/math]

Also kann die diskrete Metrik nicht durch eine Norm induziert werden.


Ein weiteres Beispiel, welches nicht alle Axiome einer Norm erfüllt, ist die:

Die SNCF-Metrik

Französisches Bahnnetz 1856

Sei [math]X[/math] eine Menge von Punkten in der Ebene und [math] p [/math] ein fester Punkt.

Dann ist die SNCF-Metrik auf [math]X[/math] wie folgt definiert:

[math] d\colon X\times X\to\mathbb R [/math]
[math] d(x,y)=\begin{cases} \|x-y\|&\text{falls } x, y \text{ auf einer Geraden durch } p \text{ liegen, }\\ \|x-p\|+\|p-y\|&\text{sonst}. \end{cases} [/math]


Der Name dieser Metrik leitet sich von der Eisenbahngesellschaft SNCF ab, da diese Metrik in den Kontext des Französischen Eisenbahnnetzes fällt. Nehme man an X seien die Städte Frankreichs, und [math] p [/math] Paris so kann der Abstand, falls es keinen direkt Zug zwischen der Stadt [math]x[/math] und [math]y[/math] gibt, deutlich länger werden.


Die SNCF-Metrik wird nicht von einer Norm induziert, denn wäre dem so, würde diese Norm die folgende Gleichung erfüllen:

[math] \| x \| = d(x,0) [/math].

Es ist jedoch, falls [math] p [/math] nicht auf einer Geraden durch [math] 0 [/math] und [math] x [/math] liegt (und damit auch nicht [math] 0 [/math] ist)

[math] d(x,0) = \| x-p \| + \| p \| \neq \| x \| [/math].

Deshalb gibt es keine Norm, die die SNCF-Metrik induziert.

Spezielle Metriken

Ultrametrik

Eine Metrik nennt man Ultrametrik falls bei der M3 Dreiecksungleichung gilt, dass der Abstand [math]d(x, y)[/math] nicht länger ist als der längere der beiden Abstände [math]d(x, z)[/math] und [math]d(z, y)[/math] und das mit beliebigem [math]z[/math]. Beispielsweise ist die diskrete Metrik eine Ultrametrik.

Pseudometrik

Eine Pseudometrik ist eine Metrik in welcher die Bedingung aus M1 [math]d\left(x,y\right) = 0 \Rightarrow x = y[/math] nicht gilt, somit ist sie positiv semidefinit. Sie wird in der Funtkionalanalysis auch als Halb- oder Semimetrik bezeichnet.

Nicht-archimedische Metriken

Hier wird die M3 Dreiecksungleichung verstärkt oder geschwächt. Ein Beispiel für diese Metrik wäre die Ultrametrik.

Quasimetrik

Verzichtet man auf M2 (Symmetrie) der Axiome so erhält man eine Quasimetrik. Eine Quasimetrik [math]b[/math] erzeugt durch [math]d(x,y):= \tfrac{1}{2} ( b(x,y) + b(y,x) )[/math] eine Metrik auf [math]X[/math].

Prämetrik

Die Prämetrik fordert nur das Axiom M1 (Positive Definitheit).

Norm Beispiele

Normen auf endlichdimensionalen Vektorräumen

Die Betragsnorm

Einheitsball der euklidischen Norm

Der Betrag ist das einfachste und am häufigsten auftretende Beispiel einer Norm. Man erhält ihn durch Weglassen des Vorzeichens:

[math]\| z \| = | z | = \begin{cases} \,\ \ z &\mathrm{f\ddot ur}\ z \ge 0\\ \, -z &\mathrm{f\ddot ur}\ z \lt 0. \end{cases} [/math]

Bei komplexen Zahlen ist der Betrag definiert durch:

Einheitsball der Maximumsnorm
[math]\| z \| = | z | = \sqrt{\left(\operatorname{Re} z\right)^2 + \left(\operatorname{Im} z\right)^2}[/math]

Euklidische Norm

Die euklidische Norm eines Vektors, auch 2-Norm eines Vektors genannt ist definiert als

[math]\| x \|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}[/math],

wobei mit [math]x_i[/math] die einzelnen Komponenten eines Vektors gemeint sind.

Maximumsnorm

Einheitsball der Summennorm

Die Maximumsnorm (auch Unendlich-Norm genannt) eines Vektors ist definiert als

[math]\| x \|_{\infty} = \max_{i=1, \dotsc, n} |x_i|[/math]

Summennorm

Die Summennorm (auch 1-Norm genannt) eines Vektors ist definiert als

[math]\| x \|_1 = \sum_{i=1}^n | x_i |[/math]

p-Normen

Beweis N3

Man kann für jedes reelles [math]1 \leq p \lt \infty[/math] die [math]p[/math]-Norm eines Vektors, durch

[math]\| x \|_p = \left(\sum_{i=1}^n | x_i |^p\right)^{1/p}[/math], definieren

Wählt man [math]p=1[/math] erhält man so die Summennorm, für [math]p=2[/math] die euklidische Norm und für [math]p\to\infty[/math] die Maximumsnorm.

Beweis  
zu zeigen: Die p-Norm ist eine Norm

N1

[math]\| x \|_p = 0 \; \Leftrightarrow \; \left(\sum_{i=1}^n | x_i |^p\right)^{1/p} \!\!\!\!\! = 0 \; \Rightarrow \; \sum_{i=1}^n | x_i |^p = 0 \; \Rightarrow \; x = 0[/math]

N2

[math]\| \alpha \, x \|_p = \left( \sum_{i=1}^n | \alpha \, x_i |^p \right)^{1/p} \!\!\!\!\! = \left( \sum_{i=1}^n | \alpha |^p \, | x_i |^p \right)^{1/p} \!\!\!\!\! = | \alpha | \, \left( \sum_{i=1}^n | x_i |^p \right)^{1/p} \!\!\!\!\! = | \alpha | \, \| x \|_p[/math]

N3 siehe Bild rechts

Normen auf unendlichdimensionalen Vektorräumen

Supremumsnorm

Die Supremumsnorm einer beschränkten Funktion ist definiert als

[math]\ \| f \|_{\sup} = \| f \|_{\infty} = \sup_{x \in \Omega} | f(x) |[/math].

Operatornorm

Seien V und W Vektorräume und sei [math]f\colon V \rightarrow W[/math] eine lineare Abbildung. Dann ist die Operatornorm definiert als:

[math]\|f\| = \sup_{x \in V\setminus\{0\}} \frac{\|f(x)\|_W}{\|x\|_V} = \sup_{\|x\|_V = 1} \|f(x)\|_W[/math]

Literatur

Otto Forster - Analysis 2 11.Auflage 2017

Quellen

https://mampf.mathi.uni-heidelberg.de/mediaforward/medium/27133/manuscript/fd7cf1a2d8b9bc5e9308ef865851e377.pdf/Analysis2-Skript-gesamt.pdf
https://mampf.mathi.uni-heidelberg.de/mediaforward/medium/27208/manuscript/adf9e7b00ee4803a0e865168bab3fe67.pdf/Metriken_Normen%20.pdf#page=2
https://de.wikipedia.org/wiki/Französische_Eisenbahnmetrik
https://de.wikipedia.org/wiki/Euklidischer_Abstand
https://de.wikipedia.org/wiki/Metrischer_Raum
https://de.wikipedia.org/wiki/Norm_(Mathematik)
http://kulla.me/de/artikel/zusammenfassung_topologie/
https://mampf.mathi.uni-heidelberg.de/mediaforward/medium/26788/manuscript/12bc7adbe55f813bc35d48c3e4ea7b5f.pdf/Analysis2-Video1-Metrische-Räume-Konvergenz-doppelseitig.pdf

Autoren

Arian Gjini, Alassane Diagne, Robin Klotzbücher