Magische Quadrate: Unterschied zwischen den Versionen

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen
Zeile 26: Zeile 26:
 
b & a\\
 
b & a\\
 
\end{bmatrix}
 
\end{bmatrix}
</math>
+
</math>
 +
mit <math>a, b \in \mathbb{Z} </math>
 
=== magische Quadrate 3-ter Ordnung ===
 
=== magische Quadrate 3-ter Ordnung ===
 
== Weblinks ==
 
== Weblinks ==

Version vom 25. August 2021, 07:45 Uhr

Definition

Bild1.png

Ein magisches Quadrat der Ordnung n beschreibt eine n×n Matrix, in welcher paarweise verschiedene ganze Zahlen, häufig 1,..., [math]n^2 [/math], so angeordnet sind, dass die Summe der Zeilen- und Spalteneinträgen dem gleichen Wert entspricht. Diesen nennt man die magischen Summe. Die summierten Einträge der Hauptdiagonalen sind ebenfalls gleich der magischen Summe. Man spricht von einem semimagischen Quadrat, falls die Hauptdiagonalen nicht der magischen Summe entsprechen.
Für die Einträge [math] 1,.., n^2 [/math] entspricht die magische Summe [math] s^* = \frac{1}{n} \sum\limits_{k=1}^{n^2} k[/math].

magische Quadrate niedriger Ordnung

Im folgenden betrachten wir magische Quadrate mit niedriger Ordnung. Da durch komponentenweise Addition zweier magischer Quadrate und der Multiplikation mit einem Skalar sich nur die magische Summer ändert, aber die Eigenschaft des magischen Quadrats erhalten bleibt betrachten wir im folgenden nur ??? magische Quadrate.

magische Quadrate 1-ter Ordnung

Magische Quadrate erster Ordnung besitzen nur einen Eintrag und sind somit trivial, da jeden 1×1-Matrix die EIgenschaft eines magischen Quadrates erfüllt.

magische Quadrate 2-ter Ordnung

Nach der oben aufgeführten Definition von magischen existieren keine magischen Quadrate zweiter Ordnung. Vernachlässigt man die Bedingung der paarweise verschiedenen Einträge haben magische bzw. semimagische Quadrate folgende Form

magisches Quadrat 2-ter Ordnung [math] \begin{bmatrix} a & a \\ a & a \\ \end{bmatrix} [/math]

semimagisches Quadrat 2-ter Ordnung [math] \begin{bmatrix} a & b \\ b & a\\ \end{bmatrix} [/math] mit [math]a, b \in \mathbb{Z} [/math]

magische Quadrate 3-ter Ordnung

Weblinks

Einzelnachweise/Literaturverzeichnis

Beck, Matthias; Robins, Sinai: Das Kontinuum diskret berechnen. Kapitel 6.
Sesiano, Jacques: Magic Squares-Their History and Construction from Ancient Times to AD 1600.

AutorInnen

Julia Renner
Joanna Schnorr
Julia Bohn

Vorlage

Überschrift 1

Überschrift 2

Hier kann man ganz normal schreiben :)

[math] \text{hier müsste es wie in der Latex equation-Funktion Formeln schreiben können } x \in \mathbb{N} : x \in \mathbb{R} [/math]

  1. nummerierte Aufzählungen
    1. neue Ebene
      1. usw.
  • Aufzählung mit Punkt
    • tiefere Ebene
    - Was passiert hier
Aufzählung ohne Zeichen
Unterpunkt
Aufzählung 2 ohne Zeichen

Hier wird etwas wichtiges zitiert

hier könnte Ihr eingerückter Text stehen

unterstrichen durchgestrichen

Durch diesen Befehl kann
innerhalb eines Absatz ein Zeilenumsprung erzeugt werden