Anwendungen der Knotentheorie: Unterschied zwischen den Versionen
(Krawatte angefangen) |
|||
Zeile 1: | Zeile 1: | ||
− | == | + | == Knoten und Graphen == |
+ | Jeder Knoten lässt sich auch als Graph darstellen. Hierfür betrachtet man den Außenbereich des Knoten, der durch die äußerste Linie abgetrennt wird und sein Inneres. Dann färbt man den Knoten schachbrettartig ein, indem man außen farbig beginnt und dann die einzelnen Gebiete gerade entgegengesetzt zu denjenigen auf der anderen Seite eines Strangs färbt. Dann verbindet man die Mittelpunkte, die so zu Ecken des Graphen werden, der weißen Gebiete, die damit zu Ecken des Graphen werden, so, dass die Verbindungslinie stets den Punkt schneidet, an dem sich benachbarte weiße Flächen treffen und erhält so die Kanten des Graphen. Schneidet die Kante des Graphen eine positive Kreuzung, d.h. eine Kreuzung, bei der der von links kommende Strang oben liegt, so wird die Kante durchgezogen. Handelt es sich um eine negative Kreuzung, bei der der von links kommende Strang unten liegt, so wird die Kante gestrichelt. | ||
+ | Umgekehrt können aus Graphen Knoten entstehen. Hierfür zeichnet man je in die Mitte der Kante ein Kreuz, das die Kante in einem Winkel von 45° schneidet. Die Enden nebeneinanderliegender Kreuze, d.h. solcher Kreuze, deren Kanten sich in einer Ecke treffen, werden verbunden. Anschließend verteilt man abwechselnd an den Kreuzen linke und rechte Kreuzungen. Auf diese Art sind einige berühmte keltische Muster entstanden. '''Bild einfügen?!''' | ||
+ | == Krawatte binden == | ||
+ | Entweder hat Mann es bei als Kind von seinem Vater gelernt, eine*n talentierte*n Partner*in oder ist und bleibt auf Schnellverschlüsse angewiesen, wenn Mann eine Krawatte tragen möchte. | ||
+ | Die meisten dürften nicht sehr viele verschiedene Knoten kennen, dabei existieren 85 mögliche Knoten zum Binden einer Krawatte. Aus praktischen Gründen werden zwar nicht alle davon realisiert, zum Einen sind unendlich lange Krawatten leider noch nicht erfunden, zum anderen müsste Mann dann eventuell sehr schweren, unförmigen Krawattenknoten um den Hals tragen und bekäme davon bestimmt Rückenschmerzen. | ||
+ | Zunächst führen wir eine Sprache ein, um eine Krawatte und ihren Knoten allgemein beschreiben zu können. Wir führen ein, dass wir immer ein aktives, das schmale Ende der Krawatte haben und das andere, das breite Ende festhalten, damit es nicht verrutscht. Weiterhin teilen wir den werten Krawattenbinder in drei Regionen ein, die durch seine Krawatte abgetrennt werden, einen linken, einen rechten und einen zentralen Teil und bezeichnen sie mit <math> L </math>, <math> C </math> und <math>R</math> (left, center, right). | ||
+ | Wir schreiben <math>\odot</math>, wenn wir die den schmalen Teil der Krawatte "aus die Ebene hinaus" ziehen und <math>\otimes </math>, wenn wir den schmalen Teil der Krawatte "in die Ebene hinein" ziehen. Außerdem schreiben wir <math>U</math> für eine Umwicklung, die nur dann erlaubt ist, wenn wir die Krawatte im letzten Zug "aus dem Papier heraus" gezogen haben. | ||
+ | Mit großen Symbolen beschreiben wir also jeweils die Lage des breiten Endes der Krawatte, mit dem Index die Richtung, in der wir die Krawatte ziehen und <math>U</math> beschreibt eine Umwicklung. Somit erhalten wir die folgenden möglichen Bewegungen, die wir mit der Krawatte durchführen können: | ||
+ | <math>\{L_{\otimes}, L_{\odot}, C_{\otimes}, C_{\odot}, R_{\otimes}, R_{\odot}, U\}</math> | ||
+ | Um die Stabilität der Krawatte zu gewährleisten führen wir einige Regeln ein: | ||
+ | # <math>(L,C,R)</math> darf sich nicht wiederholen, d.h. gleiche Symbole dürfen nicht aufeinander folgen. | ||
+ | # <math>\otimes</math> und <math>\odot</math> dürfen sich nicht direkt wiederholen. <math>U</math> ist unabhängig davon. | ||
+ | # <math>U</math> darf nur direkt auf eine Bewegung nach außen folgen. | ||
+ | # Ein Knoten darf nur mit <math>C_{\otimes}, C_{\odot}, U</math> enden. | ||
+ | # Eine <math>k</math>-fache Umschlingung ist erst erlaubt, wenn zuvor <math>2k</math> andere Bewegungen ausgeführt wurden. | ||
+ | Wir können im Folgenden die Symbole <math>\otimes</math> und <math>\odot</math> direkt weglassen, da sich stets aus dem letzten rekonstruieren lässt, mit welcher Bewegung wir begonnen haben (die letzte Bewegung muss nach außen gehen und außen und innen müssen sich stets abwechseln). Weiterhin können wir die Krawatte entweder im (<math>T</math>) oder gegen den Uhrzeigersinn (<math>W</math>) umschlingen. Die Position des aktiven (schmalen) Teils der Krawatte lässt sich dann beschreiben als <math>\#W-\#T (mod 3)</math>. | ||
+ | Elementare Überlegungen führen uns auf die Tatsache, dass wenn wir den Krawattenknoten mit <math>W</math> begonnen haben gelten muss <math>\#W-\#T = 2 (mod 3)</math> und wenn wir den Knoten mit <math>T</math> begonnen haben gelten muss <math>\#T-\#W = 2 (mod 3)</math> '''Beweis?''' | ||
+ | Wir treffen noch als weitere Annahme, dass maximal 13 Bewegungen mit der Krawatte möglich sind, ehe sie zu kurz wird oder der Träger sie so eng wickeln muss, dass er sich nicht mehr wohlfühlt. | ||
== Schuhe binden == | == Schuhe binden == | ||
Zeile 36: | Zeile 54: | ||
Wenn Ihnen dieser Artikel gefallen hat, könnte Ihnen auch das [[Museumswächterproblem]] gefallen. ^^ | Wenn Ihnen dieser Artikel gefallen hat, könnte Ihnen auch das [[Museumswächterproblem]] gefallen. ^^ | ||
== Quellen == | == Quellen == | ||
− | <references /> | + | <references />http://export.arxiv.org/pdf/1401.8242 zum Krawatten binden |
Version vom 9. September 2021, 16:39 Uhr
Knoten und Graphen
Jeder Knoten lässt sich auch als Graph darstellen. Hierfür betrachtet man den Außenbereich des Knoten, der durch die äußerste Linie abgetrennt wird und sein Inneres. Dann färbt man den Knoten schachbrettartig ein, indem man außen farbig beginnt und dann die einzelnen Gebiete gerade entgegengesetzt zu denjenigen auf der anderen Seite eines Strangs färbt. Dann verbindet man die Mittelpunkte, die so zu Ecken des Graphen werden, der weißen Gebiete, die damit zu Ecken des Graphen werden, so, dass die Verbindungslinie stets den Punkt schneidet, an dem sich benachbarte weiße Flächen treffen und erhält so die Kanten des Graphen. Schneidet die Kante des Graphen eine positive Kreuzung, d.h. eine Kreuzung, bei der der von links kommende Strang oben liegt, so wird die Kante durchgezogen. Handelt es sich um eine negative Kreuzung, bei der der von links kommende Strang unten liegt, so wird die Kante gestrichelt. Umgekehrt können aus Graphen Knoten entstehen. Hierfür zeichnet man je in die Mitte der Kante ein Kreuz, das die Kante in einem Winkel von 45° schneidet. Die Enden nebeneinanderliegender Kreuze, d.h. solcher Kreuze, deren Kanten sich in einer Ecke treffen, werden verbunden. Anschließend verteilt man abwechselnd an den Kreuzen linke und rechte Kreuzungen. Auf diese Art sind einige berühmte keltische Muster entstanden. Bild einfügen?!
Krawatte binden
Entweder hat Mann es bei als Kind von seinem Vater gelernt, eine*n talentierte*n Partner*in oder ist und bleibt auf Schnellverschlüsse angewiesen, wenn Mann eine Krawatte tragen möchte. Die meisten dürften nicht sehr viele verschiedene Knoten kennen, dabei existieren 85 mögliche Knoten zum Binden einer Krawatte. Aus praktischen Gründen werden zwar nicht alle davon realisiert, zum Einen sind unendlich lange Krawatten leider noch nicht erfunden, zum anderen müsste Mann dann eventuell sehr schweren, unförmigen Krawattenknoten um den Hals tragen und bekäme davon bestimmt Rückenschmerzen. Zunächst führen wir eine Sprache ein, um eine Krawatte und ihren Knoten allgemein beschreiben zu können. Wir führen ein, dass wir immer ein aktives, das schmale Ende der Krawatte haben und das andere, das breite Ende festhalten, damit es nicht verrutscht. Weiterhin teilen wir den werten Krawattenbinder in drei Regionen ein, die durch seine Krawatte abgetrennt werden, einen linken, einen rechten und einen zentralen Teil und bezeichnen sie mit [math] L [/math], [math] C [/math] und [math]R[/math] (left, center, right). Wir schreiben [math]\odot[/math], wenn wir die den schmalen Teil der Krawatte "aus die Ebene hinaus" ziehen und [math]\otimes [/math], wenn wir den schmalen Teil der Krawatte "in die Ebene hinein" ziehen. Außerdem schreiben wir [math]U[/math] für eine Umwicklung, die nur dann erlaubt ist, wenn wir die Krawatte im letzten Zug "aus dem Papier heraus" gezogen haben. Mit großen Symbolen beschreiben wir also jeweils die Lage des breiten Endes der Krawatte, mit dem Index die Richtung, in der wir die Krawatte ziehen und [math]U[/math] beschreibt eine Umwicklung. Somit erhalten wir die folgenden möglichen Bewegungen, die wir mit der Krawatte durchführen können: [math]\{L_{\otimes}, L_{\odot}, C_{\otimes}, C_{\odot}, R_{\otimes}, R_{\odot}, U\}[/math] Um die Stabilität der Krawatte zu gewährleisten führen wir einige Regeln ein:
- [math](L,C,R)[/math] darf sich nicht wiederholen, d.h. gleiche Symbole dürfen nicht aufeinander folgen.
- [math]\otimes[/math] und [math]\odot[/math] dürfen sich nicht direkt wiederholen. [math]U[/math] ist unabhängig davon.
- [math]U[/math] darf nur direkt auf eine Bewegung nach außen folgen.
- Ein Knoten darf nur mit [math]C_{\otimes}, C_{\odot}, U[/math] enden.
- Eine [math]k[/math]-fache Umschlingung ist erst erlaubt, wenn zuvor [math]2k[/math] andere Bewegungen ausgeführt wurden.
Wir können im Folgenden die Symbole [math]\otimes[/math] und [math]\odot[/math] direkt weglassen, da sich stets aus dem letzten rekonstruieren lässt, mit welcher Bewegung wir begonnen haben (die letzte Bewegung muss nach außen gehen und außen und innen müssen sich stets abwechseln). Weiterhin können wir die Krawatte entweder im ([math]T[/math]) oder gegen den Uhrzeigersinn ([math]W[/math]) umschlingen. Die Position des aktiven (schmalen) Teils der Krawatte lässt sich dann beschreiben als [math]\#W-\#T (mod 3)[/math]. Elementare Überlegungen führen uns auf die Tatsache, dass wenn wir den Krawattenknoten mit [math]W[/math] begonnen haben gelten muss [math]\#W-\#T = 2 (mod 3)[/math] und wenn wir den Knoten mit [math]T[/math] begonnen haben gelten muss [math]\#T-\#W = 2 (mod 3)[/math] Beweis?
Wir treffen noch als weitere Annahme, dass maximal 13 Bewegungen mit der Krawatte möglich sind, ehe sie zu kurz wird oder der Träger sie so eng wickeln muss, dass er sich nicht mehr wohlfühlt.
Schuhe binden
Was ist der effizienteste Weg, seine Schuhe zu binden?[1] Ist es die klassische Überkreuzschnürung?
Wir gehen von einem idealen Schuh aus, welcher [math] 2n [/math] Ösen besitzt, [math]n\in \mathbb{N}[/math] auf jeder Seite, um die Schnürsenkel zu binden. Um den Schnürsenkel mathematisch beschreiben zu können, muss er geschlossen sein. In der realen Welt ließe sich dies durch das Binden einer Schleife realisieren. Unsere Schnürung besteht aus [math]2n[/math] Segmenten, wobei ein Segment jeweils die Verbindung zwischen zwei Ösen ist. Das heißt demzufolge auch, dass jede Öse nur einmal verwendet wird. Als weitere Anforderung verlangen wir, dass mindestens eines der beiden einlaufenden Schnürsenkelsegmente je Öse seinen Ursprung in der anderen Reihe der Ösen besitzt. Damit wollen wir sicherstellen, dass die zwei Seiten des Schuhs wirklich festgezogen werden.
Besitzt der Schuh auf jeder Seite gerade [math] n=1[/math] Löcher, so gibt es genau eine Möglichkeit, seinen Schuh zu binden. Betrachten wir also nun einen Schuh mit [math] n\geq2[/math] Löchern auf jeder Seite. Die Anzahl der möglichen Schnürungen bei [math] n[/math] Löchern ergibt sich zu
[math]\#(n)= \frac{(n!)^2}{2} \sum\limits_{k=0}^{m}\frac{1}{n-k}\binom{n-k}{k}^2 [/math]
mit [math] m=n/2[/math] für gerade [math]n[/math] und [math]m=(n-1)/2[/math] für ungerade [math]n[/math].
Die Länge einer Schnürung ist die Summe aus allen einzelnen Teilsegmenten. Unter der Verwendung von Symmetrien und Vereinfachungen ergibt sich folgendes Muster für die kürzeste Schnürung unter unseren Vorraussetzungen, wobei hier allerdings noch zwischen [math]n[/math] gerade oder ungerade unterschieden werden muss.
Diese Schnürung ist allerdings nicht die stärkste. Der Schnürsenkel funktioniert wie ein Flaschenzug, wenn er die zwei Reihen zusammenzieht. Allerdings hängt die Stärke der Schnürung vom Verhältnis der Abstände zwischen den einzelnen Ösen und den beiden Reihen ab. Es lässt sich ein kritisches Verhältnis [math]x_n[/math] finden, sodass für [math]x\leq x_n[/math]die Überkreuzbindung die stärkste Verbindung ist und für [math] x\geq x_n [/math]die Sägezahnbindung die stärkste Verbindung ist. Für reale Schuhe hingegen ist dieses Verhältnis meistens in der Nähe von [math] x_n[/math], sodass die Art der Bindung keine entscheidende Rolle spielt.
Zwei Nägel und ein Bild
Meist werden Bilder ganz simpel und ohne mathematische Rafinesse an der Wand befestigt wie in Abb. ? gezeigt. Möchte der geschickte Mathematiker jedoch eine Weise finden, das Bild nur durch die Entfernung eines Nagels abhängen zu können (etwa um möglichst energiesparend an den dahinterliegenden Tresor zu gelangen), so braucht es hierfür eine geschicktere Konstruktion.
Eine mächtige Methode, einen geeigneten Knoten zu finden, funktioniert über die freie Gruppe. Definiert man die Erzeuger [math]x_1,{x_1}^{-1},...,x_n, {x_n}^{-1}[/math] während hierbei jeweils [math]x_i[/math] die Umschingung des Nagels [math]i[/math] im Urzeigersinn und [math]{x_i}^{-1}[/math] jene gegen den Uhrzeigersinn beschreibt. Wendet man diese Notation auf das oben beschriebene Problem mit zwei Nägeln an, so kann man sich leicht davon überzeugen, dass [math]x_1x_2{x_1}^{-1}{x_2}^{-1}[/math] eine Lösung ist, die die Voraussetzungen erfüllt. Denn sobald man nun einen Nagel hinauszieht, wir der entsprechende Erzeuger obsolet und es bleibt eine Umschlingung um den anderen Nagel im und eine gegen den Uhrzeigersinn übrig, wodurch das Bild auch diese scheinbare Aufhängung verliert und hinabfällt. Hierfür lohnt es sich bereits, dies als Kommutator [math][x1,x2][/math] einzuführen.
Nun lässt sich diese Erkenntnis auch auf das Problem erweitern, ein Bild mit n Nägeln aufhängen zu wollen, welches erneut durch das Ziehen eines beliebigen Nagels abgehängt werden kann. Für das 3-Nägel-Problem wäre etwa eine Lösung, die bekannte 2-Nägel-Lösung [math]S_2:=x_1x_2{x_1}^{-1}{x_2}^{-1}[/math] zu nutzen und durch [math][S_2,x3]=S_2x_3{S_2}^{-1}{x_3}^{-1}=x_1x_2{x_1}^{-1}{x_2}^{-1}x_3x_2x_1{x_2}^{-1}{x_1}^{-1}{x_3}^{-1}[/math] zu variieren.
Analog ergibt sich für 4 Nägel erneut induktiv die folgende Lösung: [math][S_3,x4]=S_3x_4{S_3}^{-1}{x_4}^{-1}=...=x_1x_2{x_1}^{-1}{x_2}^{-1}x_3x_2x_1{x_2}^{-1}{x_1}^{-1}{x_3}^{-1}x_4x_3x_1x_2{x_1}^{-1}{x_2}^{-1}{x_3}^{-1}x_2x_1{x_2}^{-1}{x_1}^{-1}[/math]
Einziger Nachteil dieser Methode: Man braucht [math]2^n+2^{n-1}-2[/math] Umschlingungen. Beweis folgt.
Stricken
Trivia
Wenn Ihnen dieser Artikel gefallen hat, könnte Ihnen auch das Museumswächterproblem gefallen. ^^
Quellen
http://export.arxiv.org/pdf/1401.8242 zum Krawatten binden