PageRank-Algorithmus: Unterschied zwischen den Versionen
K |
K |
||
Zeile 5: | Zeile 5: | ||
== Vektoriteration == | == Vektoriteration == | ||
− | Betrachtet man eine diagonalisierbare Matrix A, so gibt es eine Basis aus den Eigenvektoren zu den entsprechenden Eigenwerten. Nun wählen wir einen Startvektor und erhalten eine Folge <math> (v^{(i)}) </math>, die durch sukzessives Anwenden von A definiert ist. Es gilt: <math> v^ {(i+1)} = Av^ {(i)} </math>. | + | Betrachtet man eine diagonalisierbare Matrix A, so gibt es eine Basis aus den Eigenvektoren zu den entsprechenden Eigenwerten. Nun wählen wir einen Startvektor und erhalten eine Folge <math> (v^{(i)}) </math>, die durch sukzessives Anwenden von A definiert ist. Es gilt: <math> v^ {(i+1)} = Av^ {(i)} </math>. Diese Folge konvergiert bei geeigneter Wahl von dem Startvektor gegen einen Eigenvektor v der Matrix A zum Eigenwert <math> λ_{1} </math>. FAlls also k groß genug ist, gilt: |
− | |||
==Mathemodus== | ==Mathemodus== |
Version vom 22. März 2021, 13:12 Uhr
Es gibt mehrere Milliarden Websites im Internet und doch erscheint, wenn wir bei Google beispielsweise nach "Fun Facts Heidelberg" suchen, diese Seite in verschiedenen Browsern unter den ersten zehn. Das liegt daran, dass der Suchbegriff auf einigen der Seiten keine so große Rolle spielt. Man wird feststellen, dass die ersten Ergebnisse die relevantesten sind. Aber wie schafft es die Suchmaschine die Seiten so zu sortieren? Dort kommt der PageRank-Algorithmus ins Spiel, welcher die Seiten über die Anzahl an Links mit Hilfe der linearen Algebra nach ihrer Wichtigkeit sortiert.
Prinzip des PageRank-Algorithmus
Eine Website ist umso wichtiger, um so mehr Links von wichtigen Websites auf sie verweisen.
Vektoriteration
Betrachtet man eine diagonalisierbare Matrix A, so gibt es eine Basis aus den Eigenvektoren zu den entsprechenden Eigenwerten. Nun wählen wir einen Startvektor und erhalten eine Folge [math] (v^{(i)}) [/math], die durch sukzessives Anwenden von A definiert ist. Es gilt: [math] v^ {(i+1)} = Av^ {(i)} [/math]. Diese Folge konvergiert bei geeigneter Wahl von dem Startvektor gegen einen Eigenvektor v der Matrix A zum Eigenwert [math] λ_{1} [/math]. FAlls also k groß genug ist, gilt:
Mathemodus
Für jedes gi[math]n \in \mathbb{N}[/math]lt:
[math]\sum_{i=1}^\infty \frac{1}{n^2} = \frac{\pi}{6}[/math]