Benutzer:Kasparw: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Zeile 10: | Zeile 10: | ||
Für endlichen Reihen ist klar das die umordnung der Summe nicht den Wert der Summe ändert: a1 + a2 + a3 = a3 + a2 + a1. | Für endlichen Reihen ist klar das die umordnung der Summe nicht den Wert der Summe ändert: a1 + a2 + a3 = a3 + a2 + a1. | ||
− | Für Unendlichen Reihen gilt dies nicht. Umordung von Therme können den Wert den Summe ändern:[math] \sum\limits_{k=0}^{\infty} a_n = a_1 + a_2 + a_3 + ... \stackrel{\mathrm{def}}= X [/math] | + | <nowiki>Für Unendlichen Reihen gilt dies nicht. Umordung von Therme können den Wert den Summe ändern:[math] \sum\limits_{k=0}^{\infty} a_n = a_1 + a_2 + a_3 + ... \stackrel{\mathrm{def}}= X [/math]</nowiki> |
− | :[math] \sum\limits_{k=0}^{\infty} a_2n = a_2 + a_4 + a_6 + ...+ \sum\limits_{k=0}^{\infty} a_2n -1 = a_1 + a_3 + a_5 + ... \stackrel{\mathrm{def}}= Y [/math] | + | :<nowiki>[math] \sum\limits_{k=0}^{\infty} a_2n = a_2 + a_4 + a_6 + ...+ \sum\limits_{k=0}^{\infty} a_2n -1 = a_1 + a_3 + a_5 + ... \stackrel{\mathrm{def}}= Y [/math] kein axiom sagt das X und Y gleich sind.</nowiki> |
Der Beweis diese Aussage und die mathematische Idee werden auf diese Seite behandelt. | Der Beweis diese Aussage und die mathematische Idee werden auf diese Seite behandelt. |
Version vom 26. März 2021, 11:01 Uhr
Riemannsche Umordungssatz
Basic-defs (Wiktor)
Bedingte und Unbedingte Konvergenz von Reihen (Jens)
Motivation zum Satz (Kaspar):
Unendliche Reihen sind nicht kommutativ
Für endlichen Reihen ist klar das die umordnung der Summe nicht den Wert der Summe ändert: a1 + a2 + a3 = a3 + a2 + a1.
Für Unendlichen Reihen gilt dies nicht. Umordung von Therme können den Wert den Summe ändern:[math] \sum\limits_{k=0}^{\infty} a_n = a_1 + a_2 + a_3 + ... \stackrel{\mathrm{def}}= X [/math]
- [math] \sum\limits_{k=0}^{\infty} a_2n = a_2 + a_4 + a_6 + ...+ \sum\limits_{k=0}^{\infty} a_2n -1 = a_1 + a_3 + a_5 + ... \stackrel{\mathrm{def}}= Y [/math] kein axiom sagt das X und Y gleich sind.
Der Beweis diese Aussage und die mathematische Idee werden auf diese Seite behandelt.
Satz und Beweis (Kaspar)
Riemannsche Umordnungssatzt:
Kommutative Unendliche Reihen :
Für [math]S \in \mathbb{R}[/math] endl
Sei [math] \sum\limits_{k=0}^{\infty} a_n[/math] eine absolut konvergente Reihe.
Angenommen ist [math] \sum\limits_{k=0}^{\infty} a_n = S[/math]