Benutzer:Jan Agatz: Unterschied zwischen den Versionen
(LaTex-Positionierung verbessert.) |
K (Vorläufige Links eingefügt.) |
||
Zeile 5: | Zeile 5: | ||
== Motivation == | == Motivation == | ||
Die Untersuchung von Gegenbeispielen lässt sich unter anderem durch folgende drei Punkte motivieren: | Die Untersuchung von Gegenbeispielen lässt sich unter anderem durch folgende drei Punkte motivieren: | ||
− | * Gegenbeispiele können naheliegende und "intuitiv richtige" Aussage, die tatsächlich nicht gelten, widerlegen. So zeigt die Weierstraß-Funktion ''(Intralink einfügen)'', dass Stetigkeit auf einem Intervall nicht Differenzierbarkeit in (irgend-)einem Punkt implizieren muss. | + | * Gegenbeispiele können naheliegende und "intuitiv richtige" Aussage, die tatsächlich nicht gelten, widerlegen. So zeigt die [[Gegenbeispiele der Funktionentheorie und Analysis|Weierstraß-Funktion]] ''(Intralink einfügen)'', dass Stetigkeit auf einem Intervall nicht Differenzierbarkeit in (irgend-)einem Punkt implizieren muss. |
− | * Weiter können diese beweisen, dass zwei Definitionen verschieden sind, und, je nach Situation, möglicherweise auch, wodrin diese Unterschiede liegen. So zeigt die Indikatorfunktion der rationalen Zahlen (in den reellen Zahlen), die Lebesgue-integrierbar, aber nicht Riemann-integrierbar ist, dass diese beiden Definition der Integrierbarkeit/des Integrals nicht zusammenfallen können. | + | * Weiter können diese beweisen, dass zwei Definitionen verschieden sind, und, je nach Situation, möglicherweise auch, wodrin diese Unterschiede liegen. So zeigt die [[Gegenbeispiele der Funktionentheorie und Analysis|Indikatorfunktion der rationalen Zahlen (in den reellen Zahlen)]], die Lebesgue-integrierbar, aber nicht Riemann-integrierbar ist, dass diese beiden Definition der Integrierbarkeit/des Integrals nicht zusammenfallen können. |
* Schließlich zeigen Gegenbeispiele (einer bestimmten Aussage) meist pathologische Sonderfälle auf, die durch geschickte Wahl der Definition und Voraussetzung der Aussage ausgeschlossen werden können. | * Schließlich zeigen Gegenbeispiele (einer bestimmten Aussage) meist pathologische Sonderfälle auf, die durch geschickte Wahl der Definition und Voraussetzung der Aussage ausgeschlossen werden können. | ||
Version vom 6. April 2021, 22:23 Uhr
Willkommen auf meiner Benutzerseite für das Wiki-Projekt "Fun Facts" der Uni Heidelberg!
Hier findet sich ein Prototyp meines Teiles des Wiki-Artikels Gegenbeispiele der Funktionentheorie und Analysis.
Motivation
Die Untersuchung von Gegenbeispielen lässt sich unter anderem durch folgende drei Punkte motivieren:
- Gegenbeispiele können naheliegende und "intuitiv richtige" Aussage, die tatsächlich nicht gelten, widerlegen. So zeigt die Weierstraß-Funktion (Intralink einfügen), dass Stetigkeit auf einem Intervall nicht Differenzierbarkeit in (irgend-)einem Punkt implizieren muss.
- Weiter können diese beweisen, dass zwei Definitionen verschieden sind, und, je nach Situation, möglicherweise auch, wodrin diese Unterschiede liegen. So zeigt die Indikatorfunktion der rationalen Zahlen (in den reellen Zahlen), die Lebesgue-integrierbar, aber nicht Riemann-integrierbar ist, dass diese beiden Definition der Integrierbarkeit/des Integrals nicht zusammenfallen können.
- Schließlich zeigen Gegenbeispiele (einer bestimmten Aussage) meist pathologische Sonderfälle auf, die durch geschickte Wahl der Definition und Voraussetzung der Aussage ausgeschlossen werden können.
Gegenbeispiele der Analysis
Neben der Funktionentheorie und der Topologie lassen sich auch in der Analysis viele Gegenbeispiele finden.
Die Weierstraß-Funktion (Verweise auf Quelle einfügen)
Die Weierstraß-Funktion [math]f:\mathbb{R} \rightarrow \mathbb{R}[/math] ist eine stetige Funktion, die in keinem Punkt differenzierbar ist.
Zur Definition wähle man [math]a \in (0,1)[/math] und [math]b \in \mathbb{N}[/math] ungerade, sodass [math]ab \gt 1 + \frac{3\pi}{2}[/math]. Dann ist die Weierstraß-Funktion durch [math]f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sum\limits_{n = 0}^{\infty} a^n \cos\left(b^n \pi x\right)[/math] gegeben.
Man kann zeigen, dass
- die Weierstraß-Funktion [math]f[/math] stetig ist.
- die Weierstraß-Funktion [math]f[/math] in keinem Punkt differenzierbar ist.
AusklappenBeweis der Stetigkeit |
AusklappenBeweis der Nicht-Differenzierbarkeit |
Die modifizierte Dirichlet-Funktion (Verweise auf Quelle einfügen)
Eine weitere interessante Funktion, die das intuitive Verständnis der Stetigkeit herausfordert, ist die modifizierte Dirichlet-Funktion.
Diese ist definiert durch [math]g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \begin{cases}\frac{1}{q} & \text{für } x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q} \end{cases}[/math], sodass die Funktion folgende sonderbaren Eigenschaften hat:
- Sie ist in den rationalen Zahlen [math]\mathbb{Q}[/math] unstetig.
- Sie ist in den irrationalen Zahlen [math]\mathbb{R}\setminus\mathbb{Q}[/math] stetig.
AusklappenBeweis der Unstetigkeit in den rationalen Zahlen |
AusklappenBeweis der Stetigkeit in den irrationalen Zahlen |
Die Cantor-Funktion
Die Cantor-Funktion [math]f: [0,1] \rightarrow [0,1][/math] ist ein Funktion, die auf der ebenso unintuitiven Cantor-Menge [math]C \subset [0,1][/math] aufbaut und folgende Eigenschaften besitzt:
- Sie ist monoton wachsend, beginnend bei [math]f(0) = 0[/math] und endend bei [math]f(1) = 1[/math].
- Sie ist in den Punkten [math][0,1] \setminus C[/math] differenzierbar und ihre Ableitung besitzt dort jeweils den Wert [math]0[/math].
Die Indikatorfunktion der rationalen Zahlen [math]\mathbb{Q}[/math] (Verweis einfügen)
Ein letztes Gegenbeispiel der Analysis ist die Indikatorfunktion [math]\chi_{\mathbb{Q}}: \mathbb{R} \rightarrow \{0,1\}, x \mapsto \begin{cases}1 & \text{für } x \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q}\end{cases}[/math] der rationalen Zahlen [math]\mathbb{Q}[/math] in den reellen Zahlen [math]\mathbb{R}[/math], welche die Unterschiedlichkeit der Lebesgue- und Riemann-Integrierbarkeit zeigt.
Denn für ebendiese Funktion [math]\chi_{\mathbb{Q}}[/math] lässt sich zeigen, dass sie:
- Lebesgue-integrierbar ist.
- nicht Riemann-integrierbar ist.
AusklappenBeweis der Lebesgue-Integrierbarkeit |
AusklappenBeweis der Nicht-Riemann-Integrierbarkeit |