Hilberts Hotel: Unterschied zwischen den Versionen
VIHahn (Diskussion | Beiträge) K (bild) |
(Autoren hinzugefügt) |
||
Zeile 98: | Zeile 98: | ||
Für den Fall, dass endlich viele Gäste ihr Zimmer behalten wollen, so kann der Portier dennoch sein Verfahren zur Unterbringung der Gäste wie gewohnt durchführen, er muss nur nach dem letzten Gast anfangen, der sein Zimmer behalten will. | Für den Fall, dass endlich viele Gäste ihr Zimmer behalten wollen, so kann der Portier dennoch sein Verfahren zur Unterbringung der Gäste wie gewohnt durchführen, er muss nur nach dem letzten Gast anfangen, der sein Zimmer behalten will. | ||
+ | |||
+ | =Autoren= | ||
+ | Kaspar Haas, Victoria Hahn, Immanuel Klevesath |
Aktuelle Version vom 13. April 2021, 08:49 Uhr
Einführung
Hilberts Hotel ist ein Gedankenexperiment zur Veranschaulichung von Unendlichkeiten. Es wurde vom deutschen Mathematiker David Hilbert entwickelt. In dem Gedankenexperiment geht es um ein unendliches Hotel, in welchem bereits unendlich viele Gäste untergebracht sind. Das Hotel ist also voll. Nun kommen nacheinander erst ein, dann k, dann unendlich, dann k mal unendlich usw. Gäste. Nun geht es darum, wie diese Anzahl an Gästen auf das bereits volle Hotel verteilt werden kann. Hierbei nutzen wir den mathematischen Hintergrund der Abbildungen von Mengen.
Mathematisches Vorwissen/Hintergrund
Eine Bijektion ist eine Abbildung zwischen zwei Mengen M und N, die jedem Element m aus M [math]( m \in M )[/math] genau ein Element n aus N [math]( n \in N )[/math] zuordnet.
Zwei Mengen heißen gleichmächtig, falls es eine Bijektion zwischen ihnen gibt.
[math] \mid \text{ } M\mid = \mid N\mid \Leftrightarrow \exists \text{ } f: M \to N[/math], so dass f bijektiv
Eine Menge M heißt abzählbar, wenn sie gleichmächtig zu den natürlichen Zahlen [math] \mathbb{N}[/math] ist.
[math] M \text{ abzählbar} \Leftrightarrow \mid M\mid = \mid \mathbb{N} \text{ } \mid [/math]
Eine Menge M heißt unendlich, wenn sie gleichmächtig zu einer echten Teilmenge von sich selbst ist.
[math] M \text{ unendlich} \Leftrightarrow \mid M\mid = \mid L\mid, L \subset M, L \neq M [/math]
Hilberts Hotel
Ein Gast kommt
Stell dir vor du hast Ferien und möchtest in den Urlaub fahren. Die ersten Hotels, bei denen du ankommst sind leider alle schon voll belegt. Nun stehst du vor Hilberts Hotel, dessen Zimmer auch alle voll belegt sind. Du willst gerade weiterfahren, um am nächsten Hotel dein Glück zu versuchen. Da kommt der Portier mit einem Vorschlag auf dich zu: Du hast Glück, denn bei Hilberts Hotel handelt es sich nicht um ein "normales" Hotel. Es gibt zwar auch eine Lobby, und Angestellte und vielleicht sogar einen Pool, aber im Gegensatz zu "normalen" Hotels hat Hilberts Hotel unendlich viele Zimmer, die mit den natürlichen Zahlen {1,2,3,4,...} durchnummeriert sind. Nun weißt du, dass das Hotel unendlich viele Zimmer hat, aber du weißt ja auch dass es bereits voll ist, also unendlich viele Gäste im Hotel untergebracht sind.
Frage: Wie kannst du trotzdem einen Platz in einem Zimmer bekommen?
AusklappenAntwort |
k Gäste kommen
Dein Urlaub in Hilberts Hotel war so schön, dass du allen deinen Freunden davon erzählt hast. Ihr wollt nun euren nächsten Urlaub gemeinsam im Hotel Hilbert verbringen. Nun bist du aber nicht mehr allein, sondern ihr seid zu "k"-t.
Frage: Wie bekommt der Portier k Personen in das bereits volle Hotel?
AusklappenAntwort |
Ein Bus mit ∞ Gästen kommt
Die Beliebtheit von Hilberts Hotel spricht sich schnell herum und in den nächsten Ferien kommt ein ganzer Bus mit unendlich vielen Plätzen zum Hotel.
Frage: Wie kann der Portier unendlich viele neue Gäste im bereits vollen Hotel unterbringen?
AusklappenAntwort |
k Busse mit ∞ Gästen kommen
Nun kommen statt einem Bus mit unendlich vielen Gästen k Busse mit unendlich vielen Gästen.
Frage: Wie kann der Portier k mal unendlich viele Gäste im vollen Hotel unterbringen?
AusklappenAntwort |
∞ Busse mit ∞ Gästen kommen
Nun kommen statt k Bussen mit unendlich vielen Gästen unendliche viele Busse mit unendlich vielen Gästen.
Frage: Wie kann der Portier unendlich mal unendlich viele Gäste im vollen Hotel unterbringen?
AusklappenAntwort |
Abschließende Anmerkungen
Die reellen Zahlen sind überabzählbar, man kann also keine Bijektion zwischen den reellen und den natürlichen Zahlen finden. In anderen Worten: Die reellen Zahlen sind mächtiger als die natürlichen Zahlen.
Für den Fall, dass endlich viele Gäste ihr Zimmer behalten wollen, so kann der Portier dennoch sein Verfahren zur Unterbringung der Gäste wie gewohnt durchführen, er muss nur nach dem letzten Gast anfangen, der sein Zimmer behalten will.
Autoren
Kaspar Haas, Victoria Hahn, Immanuel Klevesath