Matrixgruppen in der Physik: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Mateo (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „Hauptseite“) |
Mateo (Diskussion | Beiträge) |
||
Zeile 1: | Zeile 1: | ||
[[Hauptseite]] | [[Hauptseite]] | ||
+ | |||
+ | == Beispiel: Matrizenoptik == | ||
+ | Ein Beispiel für Matrizen in der Experimentalphysik ist die sogenannte Matrizenoptik. Unter der Prämisse der geradlinigen Ausbreitung von Lichtstrahlen, die als Geraden behandelt werden können, lassen sich optische Systeme mithilfe von linearen Transformationen leicht berechnen. Betrachtet man die Ausbreitung eines Lichtstrahls unter einem kleinen Winkel zu einer Achse, so ist jener Strahl durch den Winkel und die Entfernung auf der Achse vollständig bestimmt. Die Linearisierung tan(α) = α erlaubt es, den Strahl als Vektor mit den Komponenten des Abstandes und des Winkels zu beschreiben. |
Version vom 9. August 2021, 11:57 Uhr
Beispiel: Matrizenoptik
Ein Beispiel für Matrizen in der Experimentalphysik ist die sogenannte Matrizenoptik. Unter der Prämisse der geradlinigen Ausbreitung von Lichtstrahlen, die als Geraden behandelt werden können, lassen sich optische Systeme mithilfe von linearen Transformationen leicht berechnen. Betrachtet man die Ausbreitung eines Lichtstrahls unter einem kleinen Winkel zu einer Achse, so ist jener Strahl durch den Winkel und die Entfernung auf der Achse vollständig bestimmt. Die Linearisierung tan(α) = α erlaubt es, den Strahl als Vektor mit den Komponenten des Abstandes und des Winkels zu beschreiben.