Fourieranalyse: Unterschied zwischen den Versionen
Ip253 (Diskussion | Beiträge) |
Ip253 (Diskussion | Beiträge) |
||
Zeile 22: | Zeile 22: | ||
Insbesondere gilt also, falls <math> \, f \, </math> in <math>\, x \, </math> differenzierbar ist, <math> \, FS(f)(x) = f(x) </math>. | Insbesondere gilt also, falls <math> \, f \, </math> in <math>\, x \, </math> differenzierbar ist, <math> \, FS(f)(x) = f(x) </math>. | ||
+ | {| class="wikitable mw-collapsible mw-collapsed" | ||
+ | |+ | ||
+ | |'''Beweis''' | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
===Beispiele=== | ===Beispiele=== |
Version vom 19. August 2021, 18:39 Uhr
Einleitung
Fourier-Reihen
Anschauung
Summendarstellung
Konvergenz einer Reihendarstellung
Um uns mit der Konvergenz einer Fourier-Reihe zu einer gegebenen Funktion zu befassen, definieren wir zunächst für ein [math] \: f: \mathbb{R} \rightarrow \mathbb{C} [/math] und ein [math] x /in \mathbb{R} [/math] im Fall der Existenz der jeweiligen Limiten
[math] f( x^+) := \lim_{t \searrow x} f(t) \: \: \: \: \: \: f( x^-) := \lim_{t \nearrow x} f(t) \: \: \: \: \: \: f(x^+_-) := \frac{f( x_+) + f( x^-)}{2} \\ f´( x^+) := \lim_{t \searrow 0} \frac{f(x+t)-f(x)}{t} \\ f´( x^-) := \lim_{t \nearrow 0} \frac{f(x+t)-f(x)}{t} [/math]
Nun können wir die Aussage dieses Abschnitts formulieren:
Konvergenzsatz von Dirichlet
Sei [math] \, f: \mathbb{R} \rightarrow \mathbb{R} \; 2\pi \; [/math]-periodisch und integrierbar auf [math] [ 0, 2π ] [/math]. Sei [math] x \in \mathbb{R} [/math] derart, dass [math] f( x^+), \, f( x^-), \, f´(x^+) \, [/math] und [math] \, f´(x^−) \, [/math] existieren. Dann gilt [math] \, FS(f)(x) = f(x^+_-) [/math].
Insbesondere gilt also, falls [math] \, f \, [/math] in [math]\, x \, [/math] differenzierbar ist, [math] \, FS(f)(x) = f(x) [/math].
Beweis |
Beispiele
Zeichnen mit Fourierreihen
Fouriertransformation
Inverse Fouriertransformation
Man kann diese Transformation auch in die andere Richtung vollziehen. Diese inverse Transformation lautet dann:
[math]f(x)=\frac{1}{\sqrt{2\pi}^n} \int_{\mathbb{R}^n}\ (\mathbb{F}f)\ (y)\ e^{iy\dot x} dy [/math]