Fourieranalyse: Unterschied zwischen den Versionen
Ip253 (Diskussion | Beiträge) |
Ip253 (Diskussion | Beiträge) |
||
Zeile 18: | Zeile 18: | ||
'''Konvergenzsatz von Dirichlet''' | '''Konvergenzsatz von Dirichlet''' | ||
− | Sei <math> \, f: \mathbb{R} \rightarrow \mathbb{ | + | Sei <math> \, f: \mathbb{R} \rightarrow \mathbb{C} \; 2\pi \; </math>-periodisch und integrierbar auf <math> [ 0, 2π ] </math>. Sei <math> x \in \mathbb{R} </math> derart, dass <math> f( x^+), \, f( x^-), \, f´(x^+) \, </math> und <math> \, f´(x^−) \, </math> existieren. Dann gilt <math> \, FS(f)(x) = f(x^+_-) </math>. |
Zeile 64: | Zeile 64: | ||
'''Lemma 2:''' | '''Lemma 2:''' | ||
− | Sei <math> f: \mathbb{R} \ | + | Sei <math> f: \mathbb{R} \rightarrow \mathbb{C} \; 2 \pi </math>-periodisch und integrierbar. Dann gilt für alle <math> |
n \in \mathbb{N}, \; x \in \mathbb{R} </math> | n \in \mathbb{N}, \; x \in \mathbb{R} </math> | ||
Version vom 20. August 2021, 10:34 Uhr
Einleitung
Fourier-Reihen
Anschauung
Summendarstellung
Konvergenz einer Reihendarstellung
Um uns mit der Konvergenz einer Fourier-Reihe zu einer gegebenen Funktion zu befassen, definieren wir zunächst für ein [math] \: f: \mathbb{R} \rightarrow \mathbb{C} [/math] und ein [math] x /in \mathbb{R} [/math] im Fall der Existenz der jeweiligen Limiten
[math] f( x^+) := \lim_{t \searrow x} f(t) \: \: \: \: \: \: f( x^-) := \lim_{t \nearrow x} f(t) \: \: \: \: \: \: f(x^+_-) := \frac{f( x_+) + f( x^-)}{2} \\ f´( x^+) := \lim_{t \searrow 0} \frac{f(x+t)-f(x)}{t} \\ f´( x^-) := \lim_{t \nearrow 0} \frac{f(x+t)-f(x)}{t} [/math]
Nun können wir die zentrale Aussage dieses Abschnitts formulieren:
Konvergenzsatz von Dirichlet
Sei [math] \, f: \mathbb{R} \rightarrow \mathbb{C} \; 2\pi \; [/math]-periodisch und integrierbar auf [math] [ 0, 2π ] [/math]. Sei [math] x \in \mathbb{R} [/math] derart, dass [math] f( x^+), \, f( x^-), \, f´(x^+) \, [/math] und [math] \, f´(x^−) \, [/math] existieren. Dann gilt [math] \, FS(f)(x) = f(x^+_-) [/math].
Insbesondere gilt also, falls [math] \, f \, [/math] in [math]\, x \, [/math] differenzierbar ist, [math] \, FS(f)(x) = f(x) [/math].
Beispiele
Zeichnen mit Fourierreihen
Fouriertransformation
Inverse Fouriertransformation
Man kann diese Transformation auch in die andere Richtung vollziehen. Diese inverse Transformation lautet dann:
[math]f(x)=\frac{1}{\sqrt{2\pi}^n} \int_{\mathbb{R}^n}\ (\mathbb{F}f)\ (y)\ e^{iy\dot x} dy [/math]