Benutzer:Rk192: Unterschied zwischen den Versionen

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen
Zeile 1: Zeile 1:
 
== '''Berechnung von Homologie mittels Smith-Normalform''' ==
 
== '''Berechnung von Homologie mittels Smith-Normalform''' ==
* Was ist Homologie?
 
* Smith-Normalform
 
* Beispiel
 
 
 
== Was ist Homologie? ==
 
== Was ist Homologie? ==
 
Eine Homologie ist ein mathematisches Objekt und beschreibt die Folge von Gruppen <math>\operatorname{H}_n </math>, welche etwas an Vorarbeit benötigen um verstanden zu werden.
 
Eine Homologie ist ein mathematisches Objekt und beschreibt die Folge von Gruppen <math>\operatorname{H}_n </math>, welche etwas an Vorarbeit benötigen um verstanden zu werden.
Zeile 15: Zeile 11:
  
 
<math>\operatorname{H}_n := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) </math>
 
<math>\operatorname{H}_n := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) </math>
 
<math> sin(x) = 99 </math>
 

Version vom 10. September 2021, 11:39 Uhr

Berechnung von Homologie mittels Smith-Normalform

Was ist Homologie?

Eine Homologie ist ein mathematisches Objekt und beschreibt die Folge von Gruppen [math]\operatorname{H}_n [/math], welche etwas an Vorarbeit benötigen um verstanden zu werden.

Die Homologiegruppen

Komplex:

Zunächst müssen wir verstehen, was ein sogenannter Komplex ist. Dies geht allerdings sehr rasch; ein Komplex ist eine Folge von Moduln [math]A_n [/math] über einem Ring [math]R [/math] zusammen mit Übergangsabbildungen [math]d_n : A_n \to A_{n-1} [/math], sodass die Hintereinanderausführung zweier aufeinanderfolgender Übergangsabbildungen null ergibt, also, dass für alle [math] n \in \mathbb{N}[/math] gilt [math] d_n \circ d_{n-1} = 0[/math].

Homologie:

Darauf aufbauend ist die Homologie jetzt einfach definiert als:

[math]\operatorname{H}_n := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) [/math]