Benutzer:Rk192: Unterschied zwischen den Versionen
Rk192 (Diskussion | Beiträge) |
Rk192 (Diskussion | Beiträge) |
||
Zeile 23: | Zeile 23: | ||
Zuerst müssen wir verstehen, was ein Komplex von <math>R</math>-Moduln ist. Ein Komplex ist eine Folge von <math>R</math>-Moduln <math>(A_n)_{n \in \mathbb{Z}}</math> zusammen mit Übergangsabbildungen <math>(d_n:A_n \rightarrow A_{n-1})_{n \in \mathbb{Z}}</math>, sodass | Zuerst müssen wir verstehen, was ein Komplex von <math>R</math>-Moduln ist. Ein Komplex ist eine Folge von <math>R</math>-Moduln <math>(A_n)_{n \in \mathbb{Z}}</math> zusammen mit Übergangsabbildungen <math>(d_n:A_n \rightarrow A_{n-1})_{n \in \mathbb{Z}}</math>, sodass | ||
: <math>d_n \circ d_{n+1} = 0</math> | : <math>d_n \circ d_{n+1} = 0</math> | ||
− | für jedes <math>n \in \mathbb{Z}</math> gilt. | + | für jedes <math>n \in \mathbb{Z}</math> gilt. Ein Komplex ist also ein Diagramm |
+ | : <math>... \rightarrow A_{n+1} \rightarrow A_n \rightarrow A_{n-1} \rightarrow ...</math>, | ||
+ | wobei zusätzlich | ||
+ | : <math>\operatorname{im}(d_{n+1}) \subseteq \operatorname{ker}(d_n)</math> | ||
+ | für alle Morphismen des Diagramms gilt. | ||
+ | |||
===== Homologie: ===== | ===== Homologie: ===== | ||
Darauf aufbauend ist die Homologie jetzt einfach definiert als: | Darauf aufbauend ist die Homologie jetzt einfach definiert als: | ||
<math>\operatorname{H}_n := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) </math> | <math>\operatorname{H}_n := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) </math> |
Version vom 10. September 2021, 12:25 Uhr
Berechnung von Homologie via Smith Normalform
Smith Normalform
Die Smith Normalform einer Matrix [math] M [/math] über einem Hauptidealring [math] R [/math] ist eine Matrix der Gestalt
- [math] S = \begin{pmatrix} \alpha_1 & 0 & 0 & \dots & 0 \\ 0 & \alpha_2 & 0 & \dots & 0 \\ & & \ddots\\ 0 & 0 & 0 & \dots & \alpha_n \end{pmatrix}, [/math]
sodass invertierbare Matrizen [math] U,V \in \operatorname{Gl}_n(R) [/math] existieren mit
- [math] M = USV [/math]
Was ist Homologie?
Eine Homologie ist ein mathematisches Objekt und beschreibt die Folge von Gruppen [math]\operatorname{H}_n [/math], welche etwas an Vorarbeit benötigen um verstanden zu werden.
Die Homologiegruppen
Sei [math]R[/math] ein Hauptidealring.
Komplex:
Zunächst müssen wir verstehen, was ein sogenannter Komplex ist. Dies geht allerdings sehr rasch; ein Komplex ist eine Folge von Moduln [math]A_n [/math] über einem Ring [math]R [/math] zusammen mit Übergangsabbildungen [math]d_n : A_n \to A_{n-1} [/math], sodass die Hintereinanderausführung zweier aufeinanderfolgender Übergangsabbildungen null ergibt, also, dass für alle [math] n \in \mathbb{N}[/math] gilt [math] d_n \circ d_{n-1} = 0[/math]. Zuerst müssen wir verstehen, was ein Komplex von [math]R[/math]-Moduln ist. Ein Komplex ist eine Folge von [math]R[/math]-Moduln [math](A_n)_{n \in \mathbb{Z}}[/math] zusammen mit Übergangsabbildungen [math](d_n:A_n \rightarrow A_{n-1})_{n \in \mathbb{Z}}[/math], sodass
- [math]d_n \circ d_{n+1} = 0[/math]
für jedes [math]n \in \mathbb{Z}[/math] gilt. Ein Komplex ist also ein Diagramm
- [math]... \rightarrow A_{n+1} \rightarrow A_n \rightarrow A_{n-1} \rightarrow ...[/math],
wobei zusätzlich
- [math]\operatorname{im}(d_{n+1}) \subseteq \operatorname{ker}(d_n)[/math]
für alle Morphismen des Diagramms gilt.
Homologie:
Darauf aufbauend ist die Homologie jetzt einfach definiert als:
[math]\operatorname{H}_n := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) [/math]