Benutzer:Rk192: Unterschied zwischen den Versionen

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen
Zeile 38: Zeile 38:
 
Die Homologie ist eine wichtige Invariante von Komplexen, da die <math>n</math>-te Homologie angibt wie weit der Komplex davon abweicht, dass
 
Die Homologie ist eine wichtige Invariante von Komplexen, da die <math>n</math>-te Homologie angibt wie weit der Komplex davon abweicht, dass
 
: <math>\operatorname{ker}(d_n) = \operatorname{im}(d_{n+1})</math>
 
: <math>\operatorname{ker}(d_n) = \operatorname{im}(d_{n+1})</math>
gilt.
+
gilt. Die Homologie gibt an wie weit der Komplex davon abweicht exakt zu sein.
  
 
== Berechnung von Homologie via Smith Normalform ==
 
== Berechnung von Homologie via Smith Normalform ==

Version vom 10. September 2021, 13:08 Uhr

Berechnung von Homologie via Smith Normalform

Smith Normalform

Die Smith Normalform einer nicht notwendig quadratischen Matrix [math] M [/math] über einem Hauptidealring [math] R [/math] ist eine Matrix der Gestalt

[math] S = \begin{pmatrix} \alpha_1 & 0 & \dots& & 0 & & \dots & 0 \\ 0 & \alpha_2 & & & 0 & \dots & & 0 \\ \vdots & & \ddots & & & & & \vdots \\ 0 & 0 & \dots & \alpha_{r-1} & 0 & 0 & \dots & 0\\ 0 & 0 & 0 & \dots & \alpha_r & 0 & \dots & 0\\ \vdots & & & & & \ddots\\ 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}, [/math]

sodass invertierbare Matrizen [math] U,V [/math] existieren mit

[math] S = UMV. [/math] Man nennt die [math] \alpha_i [/math] die Elementarteiler von [math] M [/math].

Es ist Aufgabe der Linearen Algebra Vorlesung, die Existenz und Eindeutigkeit der sogenannten Elementarteiler [math] \alpha_i [/math] bis auf Multiplikation mit Einheiten des Rings [math] R [/math] einer solchen Smith Normalform über Hauptidealringen im Allgemeinen zu zeigen und es sei hier nur darauf verwiesen.

Was ist Homologie?

Eine Homologie ist ein mathematisches Objekt und beschreibt die Folge von Gruppen [math]\operatorname{H}_n [/math], welche etwas an Vorarbeit benötigen um verstanden zu werden.

Die Homologiegruppen

Sei [math]R[/math] ein Hauptidealring.

Komplex:

Zuerst müssen wir verstehen, was ein Komplex von [math]R[/math]-Moduln ist. Ein Komplex ist eine Folge von [math]R[/math]-Moduln [math](A_n)_{n \in \mathbb{Z}}[/math] zusammen mit [math]R[/math]-linearen Übergangsabbildungen [math](d_n:A_n \rightarrow A_{n-1})_{n \in \mathbb{Z}}[/math], sodass

[math]d_n \circ d_{n+1} = 0[/math]

für jedes [math]n \in \mathbb{Z}[/math] gilt. Anders formuliert ist ein Komplex also ein Diagramm

[math]... \longrightarrow A_{n+1} \longrightarrow A_n \longrightarrow A_{n-1} \longrightarrow ...[/math]

von [math]R[/math]-Modulhomomorphismen, wobei zusätzlich

[math]\operatorname{im}(d_{n+1}) \subseteq \operatorname{ker}(d_n)[/math]

für alle Homomorphismen des Diagramms gilt. Oft notieren wir einen Komplex durch [math]A_\bullet[/math], d.h. wir lassen die Übergangsmorphismen weg, wenn sie aus dem Kontext klar sind.

Homologie:

Nun können wir die Homologie eines Komplexes einführen. Sei [math]A_{\bullet}[/math] ein Komplex von [math]R[/math]-Moduln. Die [math]n[/math]-te Homologie von [math]A_{\bullet}[/math] ist

[math] \operatorname{H}_n(A_{\bullet}) := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) [/math].

Sie ist wohldefiniert, da laut Definition [math]\operatorname{im}(d_{n+1}) \subseteq\operatorname{ker}(d_n)[/math] gilt. Die Homologie ist eine wichtige Invariante von Komplexen, da die [math]n[/math]-te Homologie angibt wie weit der Komplex davon abweicht, dass

[math]\operatorname{ker}(d_n) = \operatorname{im}(d_{n+1})[/math]

gilt. Die Homologie gibt an wie weit der Komplex davon abweicht exakt zu sein.

Berechnung von Homologie via Smith Normalform