Berechnung von Homologie via Smith Normalform: Unterschied zwischen den Versionen
Rk192 (Diskussion | Beiträge) |
Rk192 (Diskussion | Beiträge) |
||
Zeile 2: | Zeile 2: | ||
== Smith Normalform == | == Smith Normalform == | ||
Sei <math>R</math> ein Hauptidealring. | Sei <math>R</math> ein Hauptidealring. | ||
− | Die Smith Normalform einer nicht notwendig quadratischen Matrix <math> M </math> über | + | Die Smith Normalform einer nicht notwendig quadratischen Matrix <math> M </math> über <math> R </math> ist eine Matrix <math> S </math>, zusammen mit <math> \alpha_i \neq 0 </math>, sodass |
: <math> S = \begin{pmatrix} | : <math> S = \begin{pmatrix} | ||
\alpha_1 & 0 & \dots& & 0 & \dots & \dots & 0 \\ | \alpha_1 & 0 & \dots& & 0 & \dots & \dots & 0 \\ |
Version vom 18. September 2021, 14:44 Uhr
Smith Normalform
Sei [math]R[/math] ein Hauptidealring. Die Smith Normalform einer nicht notwendig quadratischen Matrix [math] M [/math] über [math] R [/math] ist eine Matrix [math] S [/math], zusammen mit [math] \alpha_i \neq 0 [/math], sodass
- [math] S = \begin{pmatrix} \alpha_1 & 0 & \dots& & 0 & \dots & \dots & 0 \\ 0 & \alpha_2 & & & 0 & & & 0 \\ \vdots & & \ddots & &\vdots & & & \vdots \\ 0 & 0 & \dots & \alpha_{r-1} & 0 & 0 & \dots & 0\\ 0 & 0 & 0 & \dots & \alpha_r & 0 & \dots & 0\\ \vdots & & & & & \ddots\\ 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}, [/math]
mit invertierbare Matrizen [math] U,V [/math] für die
- [math] S = UMV [/math]
gilt. Man nennt die [math] \alpha_i [/math] die Elementarteiler von [math] M [/math]. Es ist Aufgabe der Linearen Algebra Vorlesung, die Existenz und Eindeutigkeit der sogenannten Elementarteiler [math] \alpha_i [/math] bis auf Multiplikation mit Einheiten des Rings [math] R [/math] einer solchen Smith Normalform über Hauptidealringen im Allgemeinen zu zeigen und es sei hier nur darauf verwiesen.
Was ist Homologie?
Eine Homologie ist ein mathematisches Objekt und beschreibt die Folge von Gruppen [math]\operatorname{H}_n [/math], welche etwas an Vorarbeit benötigen um verstanden zu werden.
Die Homologiegruppen
Komplex:
Zuerst müssen wir verstehen, was ein Komplex von [math]R[/math]-Moduln ist. Ein Komplex ist eine Folge von [math]R[/math]-Moduln [math](A_n)_{n \in \mathbb{Z}}[/math] zusammen mit [math]R[/math]-linearen Übergangsabbildungen [math](d_n:A_n \rightarrow A_{n-1})_{n \in \mathbb{Z}}[/math], sodass
- [math]d_n \circ d_{n+1} = 0[/math]
für jedes [math]n \in \mathbb{Z}[/math] gilt. Anders formuliert ist ein Komplex also ein Diagramm
- [math]... \longrightarrow A_{n+1} \longrightarrow A_n \longrightarrow A_{n-1} \longrightarrow ...[/math]
von [math]R[/math]-Modulhomomorphismen, wobei zusätzlich
- [math]\operatorname{im}(d_{n+1}) \subseteq \operatorname{ker}(d_n)[/math]
für alle Homomorphismen des Diagramms gilt. Oft notieren wir einen Komplex durch [math]A_\bullet[/math], d.h. wir lassen die Übergangsmorphismen weg, wenn sie aus dem Kontext klar sind.
Homologie:
Nun können wir die Homologie eines Komplexes einführen. Sei [math]A_{\bullet}[/math] ein Komplex von [math]R[/math]-Moduln. Die [math]n[/math]-te Homologie von [math]A_{\bullet}[/math] ist
- [math] \operatorname{H}_n(A_{\bullet}) := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) [/math].
Sie ist wohldefiniert, da laut Definition [math]\operatorname{im}(d_{n+1}) \subseteq\operatorname{ker}(d_n)[/math] gilt. Die Homologie ist eine wichtige Invariante von Komplexen, da die [math]n[/math]-te Homologie angibt wie weit der Komplex davon abweicht, dass
- [math]\operatorname{ker}(d_n) = \operatorname{im}(d_{n+1})[/math]
gilt. Die Homologie gibt an wie weit der Komplex davon abweicht exakt zu sein.
Berechnung von Homologie via Smith Normalform
Es sei [math]...\rightarrow R^i\xrightarrow{A} R^j \xrightarrow{B} R^k \rightarrow ...[/math] ein Komplex freier [math]R[/math]-moduln. Wir identifizieren hier die Abbildungen [math]A[/math] und [math]B[/math] mit deren Matrixdarstellungen bezüglich der kanonischen Basen. Die Homologie am mittleren Term des Komplexes kann nun anhanden der Smith Normalform von [math]A[/math] beschrieben werden. Es sei [math]a = \operatorname{rank}(A)[/math] und [math]b = \operatorname{rank}(B)[/math], dann gilt
- [math]\operatorname{ker}(B)/\operatorname{im}(A)\cong\mathbb{Z}^{j-a-b}\oplus\bigoplus_{r = 1}^{a}\mathbb{Z}/\alpha_r\mathbb{Z} [/math],
wobei [math]\alpha_1, \alpha_2, \dots, \alpha_a[/math] die Elementarteiler von [math]A[/math] sind.
Beispiel
Zur Veranschaulichung wählen wir [math] R = \mathbb{Z} [/math] und als Komplex wählen wir
- [math] \dots \rightarrow \mathbb{Z}^3 \xrightarrow{A} \mathbb{Z}^4 \xrightarrow{B} \mathbb{Z}^3 \rightarrow \dots, [/math]
mit
- [math] A = \begin{pmatrix} 1 & -2 & 3\\ 0 & 0 & 0\\ 1 & 0 & 1\\ 0 & 0 & 0\\ \end{pmatrix} [/math]
und
- [math] B = \begin{pmatrix} -1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix}. [/math]
Mit dem in der linearen Algebra vermittelten Algorithmus zur Berechnung der Smith Normalform ergibt sich für die jeweiligen Smith Normalformen:
- [math] S_A = \begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ \end{pmatrix}, S_B = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}. [/math]
Damit gilt für [math] \operatorname{rank}(A) = 2 [/math] und [math] \operatorname{rank}(B) = 1 [/math] und schließlich ist die Homologie an der mittleren Stelle gegeben als
- [math] \operatorname{H} = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}. [/math]