Normen und Metriken: Unterschied zwischen den Versionen

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen
Zeile 78: Zeile 78:
 
====Die Diskrete Metrik====
 
====Die Diskrete Metrik====
 
Auf jeder menge lässt sich die triviale Metrik definieren, sie wird auch diskrete Metrik gennant und ist dazu noch eine Ultrametrik.
 
Auf jeder menge lässt sich die triviale Metrik definieren, sie wird auch diskrete Metrik gennant und ist dazu noch eine Ultrametrik.
|-
+
 
 
Sie wird wie folgt definiert sei <math>X</math> eine Menge und eine Abbildung : <math> d\colon X\times X\to\mathbb R </math>  
 
Sie wird wie folgt definiert sei <math>X</math> eine Menge und eine Abbildung : <math> d\colon X\times X\to\mathbb R </math>  
 
<math>d(x,y)=\begin{cases}
 
<math>d(x,y)=\begin{cases}

Version vom 18. September 2021, 21:25 Uhr

Unser Ziel ist es, mathematischen Objekten eine gewisse Größe und einen gewissen Abstand zuzuordnen. Aus den reellen Zahlen kennen wir bereits den Absolutbetrag und die absolute Differenz. Dieses Konzept möchten wir abstrahieren und so allgemein wie möglich formulieren, sprich auch einen Abstands- und Größenbegriff für Vektorräume oder idealerweise allgemeine Mengen definieren. Den Größenbegriff werden wir dann als Norm bezeichnen, den Abstandsbegriff als Metrik.

Wir werden feststellen, dass wir Normen auf vielen Vektorräumen definieren können und somit einen Größenbegriff für bspw. Vektoren und Matrizen, aber auch für weniger intuitive Dinge wie Funktionen erhalten. Metriken können wir sogar auf allgemeinen Mengen definieren, ohne eine Vektorraumstruktur zu benötigen.

In den reellen Zahlen wird bekanntermaßen der Absolutbetrag einer Zahl als Abstand der Zahl von 0 definiert, sprich

[math] |x| = \begin{cases} x & \text{falls}\ x \geq 0 \\ -x & \text{falls}\ x \lt 0 \end{cases}\ , \ x \in \mathbb{R} [/math],

die absolute Differenz durch

[math] d(x,y) = |x-y| , \ \ x,y \in \mathbb{R} [/math].

Dass der Absolutbetrag somit auch in der Definition unseres Abstandes in den reellen Zahlen vorkommt, legt bereits nahe, dass Normen und Metriken nicht zwei zusammenhangslose Konzepte sind, sondern, dass es eine Verbindung zwischen ihnen gibt und tatsächlichen werden wir sehen, dass sehr viele Metriken durch zugrundeliegende Normen definiert werden können ("von Normen induziert werden").

Norm Definition

Eine Norm ist eine Abbildung [math]\|\cdot\|[/math] von einem Vektorraum [math]V[/math] über dem Körper [math]\mathbb K[/math] der reellen oder komplexen Zahlen in die Menge der nichtnegativen reellen Zahlen [math]{\mathbb R}_0^{+}[/math],

[math]\|\cdot\|\colon V\to{\mathbb R}_0^{+}, \; x \mapsto \| x \|[/math],

welche die folgenden Axiome für alle Vektoren [math]x, y\in V[/math] und alle Skalare [math]\alpha\in\mathbb K[/math] erfüllt:

N1 Definitheit: [math]\|x\| = 0 \;\Rightarrow\; x = 0[/math],
N2 absolute Homogenität: [math]\|\alpha\cdot x\| = |\alpha|\cdot\|x\|[/math],
N3 Subadditivität oder Dreiecksungleichung: [math]\|x + y\| \leq \|x\| + \|y\|[/math].

Grundlegende Eigenschaften

Metrik Definition

Sei [math]X[/math] eine Menge. Eine Abbildung [math]d\colon X\times X\to \mathbb{R}[/math] heißt Metrik auf [math]X[/math], falls folgenden Eigenschaften für beliebige [math]x[/math], [math]y[/math] und [math]z[/math] von [math]X[/math] gelten:

M1 Positive Definitheit: [math]d\left(x,y\right) \geq 0[/math]     und     [math]d\left(x,y\right) = 0 \Leftrightarrow x = y[/math],
M2 Symmetrie: [math]d\left(x,y\right) = d(y,x)[/math],
M3 Dreiecksungleichung: [math]d\left(x,y\right) \leq d(x,z) + d(z,y)[/math].

das Paar ([math]X[/math],d) nennt man metrischer Raum.

Bemerkung

Für eine Metrik [math]d[/math] gilt stets:

[math]d(x,y)\geq0[/math]

Beweis

Sei [math]X[/math] eine Menge und [math]d[/math] eine Metrik so gilt für alle [math]x[/math],[math]y[/math] aus [math]X[/math]:

[math]0 = \frac{1}{2} d(x, x) \leq \frac{1}{2}(d(x, y) + d(y, x)) = \frac{1}{2}(d(x, y) + d(x, y)) = d(x, y).[/math]

qed.

Zusammenhang von Norm und Metrik

Hierarchie Topologischer Räume

Metrik Beispiele

Durch Normen induzierte Metriken

Jede Norm die es auf einem Vektorraum gibt induziert wie folgt eine Metrik

[math]d(x, y) \equiv \|x - y\|[/math]

Daher sehen wir, dass jeder normierte VR ein metrischer Raum ist.

Ein weiteres Beispiel ist:

Die SNCF-Metrik

Französisches Bahnnetz 1856

Sei [math]X[/math] eine Menge von Punkten in der Ebene und [math] p [/math] ein fester Punkt.

Dann ist die SNCF-Metrik auf [math]X[/math] wie folgt definiert:

[math] d\colon X\times X\to\mathbb R [/math]
[math] d(x,y)=\begin{cases} \|x-y\|&\text{falls } x, y \text{ auf einer Geraden durch } p \text{ liegen, }\\ \|x-p\|+\|p-y\|&\text{sonst}. \end{cases} [/math]


Der Name dieser Metrik leitet sich von der Eisenbahngesellschaft SCNF ab, da diese Metrik in den Kontext des Französischen Eisenbahnnetzes fällt. Nehme man an X seien die Städte Frankreichs, und [math] p [/math] Paris so kann der Abstand, falls es keinen direkt Zug zwischen Stadt [math]x[/math] und [math]y[/math] gibt, deutlich länger werden.

Nicht durch Normen induzierte Metriken

Die Diskrete Metrik

Auf jeder menge lässt sich die triviale Metrik definieren, sie wird auch diskrete Metrik gennant und ist dazu noch eine Ultrametrik.

Sie wird wie folgt definiert sei [math]X[/math] eine Menge und eine Abbildung : [math] d\colon X\times X\to\mathbb R [/math] [math]d(x,y)=\begin{cases} 0 & \text{für } x = y \\ 1 & \text{für } x\neq y \end{cases}[/math]

Spezielle Metriken

Ultrametrik

Pseudometrik

Nicht-archimedische Metriken

Quasimetrik

Prämetrik

Norm Beispiele

Literatur

Autoren

Alassane, Robin, Arian