Mandelbrotmenge

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen

Informationen zur Mandelbrotmenge folgen.

Julia-Menge

Hintergrund Mansur

Hallo

Definition Mansur

Grundlegende Eigenschaften Selin

Hallo

Julia-Mengen von quadratische Polynomen Selin

Graphische Darstellung Mansur

Mandelbrot-Menge

Definition über die Julia-Mengen Danielle

Die Mandelbrotmenge wurde zur Klassifizierung der Julia-Mengen definiert. Sie umfasst die Teilmenge der komplexen Zahlen, für welche die Julia Menge zusammenhängend ist. Die Mandelbrotmenge lässt sich rekursiv, wie folgt definieren:

[math] z_{n+1}=z_n^2+c [/math] mit [math]z_0 = 0 [/math]

Abhängig von der Definition der Juliamenge lässt sich die Mandelbrotmenge, wie folgt definieren:

[math]M=\{c\in \mathbb{C}\mid J_c \text{ ist zusammenhängend}\}=\{c\in\mathbb{C}\mid f^n_c(0)\not\to\infty\text{, wenn } n\to \infty\}=\{c\in\mathbb{C}\mid (z_n)_{n\in\mathbb{N}} \text{ ist beschränkt}\}[/math]


Grundlegende Eigenschaften Danielle

Grenzverhalten ausgewählter Funktionen

Für verschiedene Punkte [math]c\in\mathbb{C}[/math] lassen sich vier verschiedene Grenzverhalten beobachten:

  • Konvergenz gegen einen Punkt
  • Die Glieder bilden einen Zyklus mit zwei oder mehr Werten
  • chaotisches aber beschränktes Verhalten der Glieder
  • Divergenz gegen unendlich

Ein Punkt [math]c\in\mathbb{C}[/math] ist in [math]M[/math] falls er eines der ertsen drei Grenzverhalten aufzeigt.

Betrachten wir das Grenzverhalten der Funktion [math]z_{n+1}=z_n^2+c[/math]
Parameter (c) Folgeglieder (z_2, z_3, z_4,...) Grenzverhalten Ist c in M?
1 2, 5, 26,... bestimmte Divergenz gegen [math]\infty[/math] [math]1\notin M[/math]
0 0, 0, 0,... Konvergenz gegen 0 [math]0\in M[/math]
-1 0, -1, 0,... Zweierzyklus [math]-1\in M[/math]
i -1+i, -i, -1+i,... Zweierzyklus [math]i\in M[/math]
-1,5 0,75, [math] -\frac{15}{16}[/math], [math] -\frac{159}{256}[/math],... Chaos (beschränkt) [math]-1,5\in M[/math]
-2 2, 2, 2,... Konvergenz gegen 2 [math]2\in M[/math]
0,25 [math] \frac{5}{16}[/math], [math] \frac{89}{256}[/math], [math] \frac{24305}{65536}[/math],... KOnvergenz gegen 0,5 [math]0,25\in M[/math]

Graphische Darstellung Hannah

Geschichte Hannah

Hallo