Surreale Zahlen
Wird bearbeitet von Leonard, Luna und Thomas:
Tag ω und danach
Konstruktion von reellen Zahlen
Alle Zahlen, die wir durch Induktion über n erhalten haben, besitzen die Form [math]\frac{m}{2^n}, m,n \in \mathbb{N} [/math]. Alle diese Zahlen haben endliche Dezimaldarstellungen. Den Tag, an welchem alle diese Zahlen bereits existieren (also "ein Tag" nach abzählbar unendlich vielen Tagen) und wir mit diesen neue Zahlen erschaffen, nennen wir Tag ω. Wir werden sehen, dass sich nun auch Zahlen mit nicht endlichen Dezimaldarstellungen konstruieren lassen. Wir betrachten dazu:
Beispiel: Konstruktion von [math]\frac{1}{3}[/math]
Es soll hier zunächst die Konstruktionsidee skizziert werden, welche in ähnlicher Form in weiteren Konstruktionen angewandt werden wird:
Konstruktionsidee
Wir wollen erreichen, dass [math]x=\frac{1}{3} [/math]
Wir wissen, dass [math] X_L \lt x \lt X_R [/math] . Wir füllen nun also [math]X_L [/math] mit Zahlen, die kleiner sind als [math]\frac{1}{3}[/math] und [math]X_R [/math] mit entsprechend größeren. Wir benötigen also also zwei nach 1/3 konvergente Folgen in den dyadisch rationalen Zahlen (welche bereits existieren). Setze also [math]x= \{a_n \in (a)_n | b_n \in (b)_n\}[/math], wobei [math](a)_n[/math]eine monoton steigende und [math](b)_n[/math]eine monoton fallende Folge ist.
Ansatz
Setze
[math]a_n=\frac{(4^n-1)/3}{4^n}[/math]
und
[math]b_n=\frac{(2^{2n+1}+1)/3}{2^{2n+1}}[/math]
Man kann sich leicht überlegen, dass die Folgen die gewünschten Eigenschaften besitzen.
Da sich die reellen Zahlen vollständig durch Cauchyfolgen konstruieren lassen, ist somit ganz [math]\mathbb{R} [/math] an Tag ω erschaffen.
Konstruktion von hyperrellen Zahlen
An Tag ω werden aber nicht nur die Reellen Zahlen erschaffen, sondern ebenfalls infinitesmal benachtbarte und infinite Zahlen. Diese können mit den hyperreellen Zahlen identifiziert werden. In der Tat ist der Konstruktionsmechanismus sogar ausgesprochen ähnlich.