Surreale Zahlen
Surreale Zahlen wurden zunächst von John Conway vorgestellt. der sie zunächst einfach "Zahlen" (engl. Numbers) nannte, bekanntheit erlangten sie 1974 durch den in Dialogform verfassten Roman Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness von Donald E. Knuth[1]. Dieser benutzte auch den Begriff der Surrealen Zahlen, den auch Conway später verwendete.[2] Surreale Zahlen lassen sich allein aus dem vorhandensein von Mengen konstruieren, sind aber selbst nur eine Klasse. Sie enthalten die reellen und auch hyperreellen Zahlen als Teilmenge.[3] Desweiteren eignen sie sich zur spieltheoretischen Analyse von bestimmten Spielen.
Erste Konstruktionsschritte
Grundidee
jede surreale Zahl [math]x [/math] lässt sich als [math]x = \{L|R\} [/math] mit zwei Mengen [math]L [/math] (linke Menge von [math]x [/math]) und [math]R [/math] (rechte Menge von [math]x [/math]) schreiben, wobei gelten soll:
- [math]L [/math] und [math]R [/math] sind selber Mengen surrealer Zahlen oder die leere Menge
- Wohlgeformtheit: Jedes Element aus [math]L [/math] ist kleiner als jedes Element aus [math]R [/math] (siehe Ordnungsrelation)
Die so entstandene Zahl [math]x [/math] ist größer als jedes Element aus [math]L [/math] und kleiner als jedes Element aus [math]R [/math].
Wir betrachten die Äquivalenzrelation: [math]x == y :⇔ x ≤ y [/math] und [math]y ≤ x [/math] (Die Definition der Äquivalenzklassen ist rein rekursiv) und geben den entsprechenden Äquivalenzklassen der Form [math][x] [/math] neue Bezeichnungen, wobei als Repräsentant das älteste Mitglied der Äquivalenzklasse gewählt wird (siehe Abbildung zu Tag 0 bis Tag 2)
Notation
Wir schreiben der Einfachheit und Übersichtlichkeit halber [math]\{a,b|x\} [/math] statt [math]\{\{a,b\}|\{x\}\} [/math] und [math]\{|y\} [/math] statt [math]\{∅|\{y\}\} [/math].
Ordnungsrelation
Seien [math]x = \{L_x|R_x\}[/math], [math]y = \{L_y|R_y\}[/math] surreale Zahlen.
Dann gilt [math]x ≤ y[/math] genau dann, wenn [math]y[/math] kleinergleich keinem Element von [math]L_x[/math] und kein Element von [math]R_y[/math]kleinergleich [math]x[/math] ist. [math]x \lt y[/math] wird als "nicht [math]y ≤ x[/math]" definiert.
(Quantorenschreibweise: [math]x ≤ y :⇔ ∀lx∈Lx: lx \lt y, ∀ry∈Ry: ry \gt x[/math]
Bemerkung: Diese Definition ist zunächst etwas verwirrend, weil für die Definition der ≤-Relation die ≤-Relation bereits selber verwendet wird. Die Relation ist also rein rekursiv gegeben.
zeige, dass [math]-1 \lt 0[/math]:
( [math]0[/math] bezeichnet [math][\{|\}][/math], [math]-1[/math] bezeichnet [math][\{|0\}][/math], mehr dazu: siehe unten) [math]-1 \lt 0[/math] [math]⇔ \{|0\} \lt \{|\}[/math] [math]⇔ ¬(\{|\} ≤ \{|0\})[/math] [math]⇔ ¬(∀l_x∈∅: l_x \lt \{|0\} [/math] und [math]∀r_y∈\{0\}: r_y \gt \{|\}) [/math] [math]⇔ ¬(∀r_y∈\{0\}: r_y \gt \{|\})[/math] [math]⇔ ∃r_y∈\{0\}: r_y ≤ \{|\}[/math] [math]⇔ 0 ≤ 0[/math] (✓) |
Tag 0 bis Tag 2
So lassen sich die ersten surrealen Zahlen konstruieren:
Wähle für die linke und rechte Menge der neuen surrealen Zahl Mengen bereits bekannter surrealer Zahlen bzw. die leere Menge. Überprüfe dann, ob die so entstandenen Zahlen wohlgeformt sind. Falls ja, betrachte die Äquivalenzklassen bezüglich der Gleichheitsrelation und benenne sie neu (Schema zur neuen Bezeichnung: siehe Abbildung)
(Bemerkung: warum die Bezeichnungen genau so gewählt sind, ergibt sich erst wirklich, wenn die surrealen Zahlen als Körper betrachtet werden)
Wir beginnen mit der leeren Menge als rechte sowie linke Menge. Da die leere Menge keine Elemente enthält, wird keine Regel verletzt und wir erhalten die wohlgeformte surreale Zahl [math]\{|\}[/math], die wir [math]0[/math] nennen. |
/
Nun können wir aus der leeren Menge und unserer ersten surrealen Zahl 0 die folgende weitere surreale Zahlen konstruieren: [math]\{|0\} := -1[/math] und [math]\{0|\} := 1[/math]. Die Zahl [math]\{0|0\}[/math] ist dabei nicht wohlgeformt, da alle Elemente der linken Menge strikt kleiner als alle Elemente der rechten Menge sein müssen und [math]0 ≤ 0[/math]gilt.
Es ergibt sich die Anordnung [math]-1 \lt 0 \lt 1[/math]. |
/
|
Tag ω und danach
Konstruktion von reellen Zahlen
Alle Zahlen, die wir durch Induktion über n erhalten haben, besitzen die Form [math]\frac{m}{2^n}, m,n \in \mathbb{Z} [/math][4]. Alle diese Zahlen haben endliche Dezimaldarstellungen.[5] Den Tag, an welchem alle diese Zahlen bereits existieren (also "ein Tag" nach abzählbar unendlich vielen Tagen) und wir mit diesen neue Zahlen erschaffen, nennen wir Tag ω. Wir werden sehen, dass sich nun auch Zahlen mit nicht endlichen Dezimaldarstellungen konstruieren lassen. Wir betrachten dazu:
Beispiel: Konstruktion von [math]\frac{1}{3}[/math]
Es soll hier zunächst die Konstruktionsidee skizziert werden, welche in ähnlicher Form in weiteren Konstruktionen angewandt werden wird:
Konstruktionsidee
Wir wollen erreichen, dass [math]x=\frac{1}{3} [/math]
Wir wissen, dass [math] X_L \lt x \lt X_R [/math] . Wir füllen nun also [math]X_L [/math] mit Zahlen, die kleiner sind als [math]\frac{1}{3}[/math] und [math]X_R [/math] mit entsprechend größeren. Wir benötigen also also zwei nach 1/3 konvergente Folgen in den bereits existenten Zahlen. Setze[6] also [math]x= \{a_n \in (a)_n | b_n \in (b)_n\}[/math], wobei [math](a)_n[/math]eine monoton steigende und [math](b)_n[/math]eine monoton fallende Folge ist.
Ansatz
Setze
[math]a_n=\frac{(4^n-1)/3}{4^n}[/math]
und
[math]b_n=\frac{(2^{2n+1}+1)/3}{2^{2n+1}}[/math]
Man kann sich leicht überlegen, dass die Folgen die gewünschten Eigenschaften besitzen.
Da sich die reellen Zahlen vollständig durch Cauchyfolgen konstruieren lassen, ist somit ganz [math]\mathbb{R} [/math] an Tag ω erschaffen.
Konstruktion von hyperrellen Zahlen
An Tag ω werden aber nicht nur die Reellen Zahlen erschaffen, sondern ebenfalls infinitesmal benachtbarte und infinite Zahlen. Diese können mit solchen aus den hyperreellen Zahlen identifiziert werden.
Beispiel: Konstruktion von ε
Setze [math]a_n=\frac{1}{2^n}[/math]. Dann ist [math]\epsilon = \{ 0 | a_n \in (a)_n\}[/math]kleiner als jede positive Zahl, aber größer als Null, also eine infinitismal kleine Zahl. Durch Addition [math]x+\epsilon[/math] (oder subtraktion) lässt sich zu zu jeder Zahl x eine infinitismal benachtbarte Zahl schaffen.
Beachte, dass [math](a)_n[/math]eine beliebige Nulllfolge sein kann.
Beispiel: Konstruktion von ω
Setze [math]a_n=n[/math]. Dann ist [math]\omega = \{ a_n \in (a)_n| \}=\{ 1,2,3,4,...| \}[/math]offenbar größer als jede reelle Zahl.
Es ist desweiteren εω = 1, was hier gezeigt wird.
Rechnen mit surrealen Zahlen
Grundrechenarten
Wir definieren:
- [math]x = \{L_x|R_x\} [/math]ist [math]-x := \{-R_x|-L_x\} [/math]
- [math]x + y := {L_x + y, x + L_y|R_x + y, x + R_y} [/math]
- [math]x − y := x + (−y) [/math]
- [math]x·y := \{L_x ·y + x·L_y − L_x ·L_y, R_x ·y + x·R_y − R_x ·R_y|L_x ·y + x·R_y − L_x ·R_y, R_x ·y + x·L_y − R_x ·L_y\} [/math]
- [math]x − y := x + (−y) [/math]
- [math]\frac xy = x \left( \frac 1y \right)[/math] mit [math]\frac 1y = \Bigg \{0, \frac{1+(y_R-y)(\frac1y)_L}{y_R}, \frac{1+(y_L-y)(\frac1y)_R}{y_L} \Bigg | \frac{1+(y_L-y)(\frac1y)_L}{y_L}, \frac{1+(y_R-y)(\frac1y)_R}{y_R} \Bigg \}[/math]
Die Rechenregeln sind größtenteils analog zu den Rechenregeln für reelle Zahlen, es gilt:
[math]-(-x) = x [/math]
[math]x ≤ y ⇔ −y ≤ −x [/math]
[math]x ≤ y if and only if x + z ≤ y + z [/math]
[math](x + y) + z = x + (y + z) [/math]
[math]x + 0 = x [/math]
[math]x + (−x) == 0 [/math]
[math]x · 0 = 0 and 0 · x = 0 [/math]
[math]1 · y = y and y · 1 = y [/math]
[math]x · 1 x = 1 [/math]
(Beweise: siehe hier)
x·y = {XL ·y+x·YL−XL ·YL, XR ·y+x·YR −XR ·YR|XL ·y+x·YR −XL ·YR, XR ·y+x·YL−XR ·YL}
Spieltheorie
Spiele, die bestimmten Regeln folgen, lassen sich durch surreale Zahlen beschreiben. Für muss ein Spiel allerdings folgende Eigenschaften aufweisen:
- Es gibt nur zwei Spieler.
- Das Spiel ist deterministisch.
- Alle Informationen sind offen zugänglich.
- Die Spieler machen abwechselnd ihren Zug.
- Das Spiel endet nach einer endlichen Anzahl an Zügen mit dem Sieg eines Spielers.
- Kann ein Spieler keinen Zug mehr machen, verliert er und das Spiel endet.
Bekannte Beispiele für solche Spiele sind Schach, Mühle, Dame und Go.
Games
Verallgemeinert man die surrealen Zahlen, indem man die Bedingung, dass jedes Element aus [math]L [/math] kleiner ist als jedes Element aus [math]R [/math]weglässt, dann erhält man die Games.
Konstruktionsregel:
Sind [math]L[/math] und [math]R[/math] zwei Mengen von Games, dann ist [math]\{ L | R \}[/math] ein Game.
Mit dieser Konstruktionsregel lässt sich ein Game konstruieren. Operationen, wie Vergleich, Äquivalenz, Addition, Negation und Multiplikation sind genauso wie für surreale Zahlen definiert.
Da Games eine größere Klasse von Objekten als die surrealen Zahlen definiert, ist jede surreale Zahl auch ein Game. Eine später noch wichtige Eigenschaft der Games ist, dass ein Game entweder größer, gleich, kleiner als [math]0[/math] oder unvergleichbar mit [math]0[/math] ist.
Referenzen
- ↑ Donald E. Knuth, 1974: Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness
- ↑ https://de.wikipedia.org/wiki/Surreale_Zahl
- ↑ John H. Conway, 1976: On Numbers and Games
- ↑ https://de.wikipedia.org/wiki/Surreale_Zahl
- ↑ https://en.wikipedia.org/wiki/Decimal#Decimal_fractions
- ↑ https://www.whitman.edu/documents/Academics/Mathematics/Grimm.pdf#page=16