Euklidischer Algorithmus und Kettenbrüche
Version vom 18. März 2021, 16:42 Uhr von PaulBruckert (Diskussion | Beiträge) (paar Sachen ausprobiert)
Diese Seite behandelt den simplen, aber zugleich genialen Euklidischen Algorithmus und wie dieser mit der Kettenbruchdarstellung rationaler und irrationaler Zahlen zusammenhängt.
Der Euklidische Algorithmus
Kettenbruchdarstellung rationaler Zahlen
Satz: Eine reelle Zahl ist genau dann rational, wenn sie sich als endlichen Kettenbruch darstellen lässt.
Beweis |
[math] \Rightarrow [/math]: Ein endlicher Kettenbruch stellt eine rationale Zahl dar, denn diesen erhält man durch endliche Summen und Produkte im Körper [math] \mathbb{Q} [/math]. [math] \Leftarrow [/math]: Dass eine rationale Zahl sich als endlicher Kettenbruch schreiben lässt, ist intuitiv vermutlich einleuchtend. Um dieses Ziel zu erreichen, wende folgenden Algorithmus an: ... |