Matrixgruppen in der Physik

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen

Hauptseite

Beispiel: Matrizenoptik

Ein Beispiel für Matrizen in der Experimentalphysik ist die sogenannte Matrizenoptik. Unter der Prämisse der geradlinigen Ausbreitung von Lichtstrahlen, die als Geraden behandelt werden können, lassen sich optische Systeme mithilfe von linearen Transformationen leicht berechnen. Betrachtet man die Ausbreitung eines Lichtstrahls unter einem kleinen Winkel zu einer Achse, so ist jener Strahl durch den Winkel und die Entfernung auf der Achse vollständig bestimmt. Die Linearisierung tan(α) = α erlaubt es, den Strahl als Vektor mit den Komponenten des Abstandes und des Winkels zu beschreiben. Es gilt also für den Vektor [math]\textbf{r} = (r, \alpha)[/math], der einen Lichtstrahl charakterisiert, dass das Zurücklegen einer Strecke [math]b[/math]entlang der jeweiligen Achse durch eine Matrix beschrieben werden kann, die im einfachen Fall zweier Dimensionen durch

[math]\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}[/math]

gegeben ist. Der Lichtstrahl wird also, nachdem er die Strecke [math]b[/math]entlang der Achse unter einem Winkel α zurückgelegt hat, durch

[math]\textbf{r} = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} (r, \alpha) = (r + \alpha b , \alpha) [/math]

beschrieben. Konvention ist häufig, die Achse, bezüglich derer die Propagation, d. h. Ausbreitung des Lichtstrahls berechnet wird, als z-Achse zu benennen. Zudem gilt zumeist: die Strahlrichtung läuft von links nach rechts, die Steigung ist positiv, wenn der Strahl von der Achse wegläuft, und es werden bestimmte Annahmen bezüglich des Vorzeichens des Radiuses von Flächen, der Bildweite und -größe getroffen. Folgende Matrizen können angewandt werden, um typische Operationen zu berechnen:

Operation Matrix
Translation [math]\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} [/math]
Brechung [math]\begin{bmatrix} 1 & b \\ 0 & \frac{n_1}{n_2} \end{bmatrix} [/math]
dünne Linse [math]\begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} [/math]
gekrümmter Spiegel [math]\begin{bmatrix} 1 & 0 \\ -\frac{2}{r} & 1 \end{bmatrix} [/math]

Hierbei stehen [math]n_1, n_2[/math]für die Brechungsindices der Medien, die das Licht in dieser Reihenfolge passiert, [math]f[/math]für die Brennweite der Linse und [math]r[/math]für den Radius des gekrümmten Spiegels.