Euklidischer Algorithmus und Kettenbrüche
Diese Seite behandelt den simplen, aber zugleich genialen Euklidischen Algorithmus und wie dieser mit der Kettenbruchdarstellung rationaler und irrationaler Zahlen zusammenhängt.
Der Euklidische Algorithmus
Schon 300 vor Christus befasste sich Euklid in seinem berühmten Werk "Die Elemente" mit der Frage, wie man das größte gemeinsame Maß, also den größten gemeinsamen Teiler (ggT) zweier Zahlen finden kann.
Er entwickelte dazu einen Algorithmus, der auf folgendem Lemma beruht:
Lemma: Es seien a, b ganze Zahlen und b > 0 mit
a = bq + r, 0 ≤ r < b
Dann gilt ggT(a, b) = ggT(b, r).
a = bq + r, also ist jeder gemeinsame Teiler von b und r auch ein Teiler von a.
Stellt man die Gleichung nach r um, erhält man r = a - bq und somit ist jeder gemeinsame Teiler von a und b auch ein Teiler von r. Die Zahlenpaare (a, b) und (b, r) haben also die gleichen gemeinsamen Teiler und somit auch den gleichen ggT. |
Funktionsweise
Gesucht ist nun also der größte gemeinsame Teiler zweier ganzer Zahlen a und b. Der Algorithmus funktioniert wie folgt:
- Teile a durch b und erhalten den Rest r.
- Ist r = 0, ist a ohne Rest durch b teilbar und es gilt ggT(a, b) = b. Ist r ≠ 0, ersetze a durch b und wiederhole Schritt 1.
- Führe die Schritte solange durch, bis Rest 0 bleibt. Der letzte Rest, der von 0 verschieden ist, ist der größte gemeinsame Teiler von a und b.
Gesucht ist der ggT von 22 und 16 |
---|
1. 22/16 = 1, Rest 6
2. Rest ungleich 0 => Schritt 1 3. 16/6 = 2, Rest 4 4. 6/4 = 1, Rest 2 5. 4/2 = 2, Rest 0 => Der größte gemeinsame Teiler von 22 und 16 ist 2. |
Kettenbruchdarstellung rationaler Zahlen
Satz: Eine reelle Zahl ist genau dann rational, wenn sie sich als endlichen Kettenbruch darstellen lässt.
Beweis |
[math] \Rightarrow [/math]: Ein endlicher Kettenbruch stellt eine rationale Zahl dar, denn diesen erhält man durch endliche Summen und Produkte im Körper [math] \mathbb{Q} [/math]. [math] \Leftarrow [/math]: Dass eine rationale Zahl sich als endlicher Kettenbruch schreiben lässt, ist intuitiv vermutlich einleuchtend. Um dieses Ziel zu erreichen, wende folgenden Algorithmus an: ... |
Kettenbrüche und ihre geometrische Anschauung
Hier ein paar tolle Mathesachen als Test! [math] 2 \dot \frac{1}{1 + 1} [/math]