Gegenbeispiele der Funktionentheorie und Analysis
Diese Seite untersucht Gegenbeispiele in den mathematischen Teilgebieten "Funktionentheorie" und "Analysis".
Wir untersuchen die Unterschiede zwischen komplexer Differenzierbarkeit und total reeller Differenzierbarkeit. Hierfür formulieren wir einige besondere Eigenschaften komplex Differenzierbarer (holomorpher) Funktionen, und finden reelle Gegenbeispiele, für welche diese Aussagen nicht gelten. Dem gegenüber stellen wir harmonische Funktionen, eine Klasse reellwertiger [math]C^2[/math]-Funktionen, welche holomorphen Funktionen in gewisser Weise ähnlich sind.
Holomorphe Funktionen
Motivation
In der eindimensionalen reellen Analysis definieren wir die Differenzierbarkeit einer Funktion [math]f\colon\mathbb{R} \to \mathbb{R}[/math] im Punkt [math]x_0[/math] über ihren Differenzenquotienten [math]\frac {f(x) - f(x_0)} {x-x_0}[/math].
Für mehrdimensionale Funktionen [math]f\colon\mathbb{R^n} \to \mathbb{R^m}[/math] ist dieser Ausdruck aber nicht mehr sinnvoll, da man hier durch einen Vektor [math]x-x_0 \in \mathbb{R^n}[/math] teilen würde. Daher benötigt man dort die Definition über das totale Differential.
Für den Spezialfall [math]f\colon\mathbb{R}^2 \to \mathbb{R}^2[/math] können wir jedoch auch [math]\mathbb{R}^2[/math] mit [math]\mathbb{C}[/math] identifizieren und die Körperstruktur von [math]\mathbb{C}[/math] nutzen. Dort ist also die Division durch [math]x-x_0 \in \mathbb{C}[/math] möglich, und wir erhalten mit dem klassischen Differenzenquotienten eine stärkere Art der Differenzierbarkeit, welche die Existenz eines totalen Differentials impliziert und darüber hinaus geht.
Definition
Sei [math]U\subseteq \mathbb{C}[/math] eine offene Teilmenge der komplexen Ebene. Eine Funktion [math]f\colon U \to \mathbb{C}[/math] heißt komplex differenzierbar im Punkt [math]z_0 \in U[/math], falls der Grenzwert [math]\lim \limits_{h \to 0}\frac{f(z_0+h)-f(z_0)}{h}[/math] existiert. Den Grenzwert bezeichnet man als [math]f'(z_0)[/math].
Ist [math]f[/math] in jedem Punkt [math]z \in U[/math] komplex differenzierbar, so heißt [math]f[/math] holomorph in [math]U[/math].
Ist [math]f[/math] auf ganz [math]\mathbb{C}[/math] komplex differenzierbar, so heißt [math]f[/math] ganze Funktion.
Totale Differenzierbarkeit
Definition
Sei [math]U\subseteq \mathbb{R}^2[/math] eine offene Teilmenge der reellen Ebene. Eine Funktion [math]f\colon U \to \mathbb{R}^2[/math] heißt (total) differenzierbar im Punkt [math]x_0[/math], falls eine lineare Abbildung [math]L\colon\mathbb{R}^2 \to \mathbb{R}^2[/math] existiert, so dass [math]\lim \limits_{h \to 0}\frac{f(x_0+h)-f(x_0)-L(h)}{||h||}=0[/math].
Die Abbildung [math]L[/math] wird als (totales) Differential bezeichnet.
Totale Differenzierbarkeit impliziert partielle Differenzierbarkeit und [math]L[/math] ist eindeutig (Jacobi-Matrix).
Jacobi-Matrix
Wir schreiben eine Funktion [math]f\colon U \to \mathbb{R}^2[/math] mithilfe ihrer reellwertigen Komponenten [math]f_1, f_2\colon U \to \mathbb{R}[/math]
[math]f(x_1,x_2):= \left(\begin{array}{c} f_1(x_1,x_2) \\ f_2(x_1,x_2) \end{array}\right)[/math]
Die lineare Abbilidung [math]L[/math] ist durch die Jacobi-Matrix [math]J_f(x_0) := \left( \begin{array}{rr} \frac{\partial f_1}{\partial x_1}(x_0) & \frac{\partial f_1}{\partial x_2}(x_0) \\ \frac{\partial f_2}{\partial x_1}(x_0) & \frac{\partial f_2}{\partial x_2}(x_0) \\ \end{array}\right)[/math] gegeben, wobei [math]\frac{\partial f_i}{\partial x_j}[/math] die partiellen Ableitungen bezeichnen, also die Ableitung der reellwertigen Funktion [math]f_i[/math] nach der Variablen [math]x_j[/math].
Identifikation mit komplexwertigen Funktionen
Man kann nun die Komponenten f_1 und f_2 als Real- bzw. Imaginärteil einer komplexwertigen Funktion auffassen.
Sei z:=z_1+iz_2 \in \mathbb{C}.
f(z):=f_1(z_1,z_2)+if_2(z_1,z_2) ist nun die entsprechende Funktion von \mathbb{C} nach \mathbb{C}. Diese kann man also auf Holomorphie untersuchen, und es stellt sich die Frage, wie die beiden Differenzierbarkeitsbegriffe zusammenhängen.