Benutzer:Rk192

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen

Berechnung von Homologie via Smith Normalform

Was ist Homologie?

Eine Homologie ist ein mathematisches Objekt und beschreibt die Folge von Gruppen [math]\operatorname{H}_n [/math], welche etwas an Vorarbeit benötigen um verstanden zu werden.

Die Homologiegruppen

Komplex:

Zunächst müssen wir verstehen, was ein sogenannter Komplex ist. Dies geht allerdings sehr rasch; ein Komplex ist eine Folge von Moduln [math]A_n [/math] über einem Ring [math]R [/math] zusammen mit Übergangsabbildungen [math]d_n : A_n \to A_{n-1} [/math], sodass die Hintereinanderausführung zweier aufeinanderfolgender Übergangsabbildungen null ergibt, also, dass für alle [math] n \in \mathbb{N}[/math] gilt [math] d_n \circ d_{n-1} = 0[/math].

Homologie:

Darauf aufbauend ist die Homologie jetzt einfach definiert als:

[math]\operatorname{H}_n := \operatorname{ker}(d_n)/\operatorname{im}(d_{n+1}) [/math]