Zufallsmatrizen - Bohemians und die geheimnisvolle Ordnung im Chaos
Hier entsteht eine tolle Seite ... bis dahin noch etwas Geduld! :D
Einleitung
Zufallsmatrizen
Definition
Eine Zufallsmatrix ist eine Matrix, deren Einträge teils oder ganz zufällig sind.
- [math] \frac{N_{f,H} - \int f(\lambda) \, dN(\lambda)}{\sigma_{f, n}} \overset{D}{\longrightarrow} N(0, 1) [/math]
Bohemian Matrices
Inhalt
Galerie
Betaverteilung
Zufällige Matrix mit Einträgen aus diskreter Menge
Obere Hessenbergmatrix
Tridiagonalmatrix
Feste Matrix mit kontinuierlicher Verteilung in bestimmten Werten (Eigenfish)
Hier wurden Matrizen von der Form [math]\begin{pmatrix} 0 & 0 & 0 & A \\ -1 & -1 & 0 & 0 \\ B & 0 & 0 & 0 \\ -1 & 1 & 1 & -1 \end{pmatrix}[/math]
Trivia (vor oder nach Galerie?)
Zufallsmatrizen können in den unterschiedlichsten, teils überraschenden Themengebieten genutzt werden, um (Natur-)Phänomene zu beschreiben oder Daten zu modellieren. So etwa bei:
- Abständen parkender Autos und von Bäumen im Wald
- Datenkompression, Mobilfunk
- Finanzwirtschaft
Nicht nur in praktischen Anwendungsgebieten werden Zufallsmatrizen benutzt: Auch bei theoretischeren Problemen in der Mathematik, wie dem Beweis der Riemannschen Vermutung, sind Zufallsmatrizen möglicherweise ein vielversprechender Ansatz, näher an eine Lösung zu kommen - bspw. über eine Matrix (von den Wissenschaftlern "Riemannium" getauft), deren Eigenwerte den Nullstellen der Riemannschen Zeta-Funktion entsprechen.
Quellen und Links
Quellen