Zufallsmatrizen - Bohemians und die geheimnisvolle Ordnung im Chaos
Hier entsteht eine tolle Seite ... bis dahin noch etwas Geduld! :D
Einleitung
Begriffsklärung
Betaverteilung
Bei diesen Matrizen werden alle Einträge zufällig aus einer Betaverteilung mit vorher festgelegten Parametern generiert. Eine Betaverteilung ist eine Art von Wahrscheinlichkeitsverteilung (https://de.wikipedia.org/wiki/Beta-Verteilung). Dadurch entstehen je nach Wahl der Parameter Linienmuster, auf denen sich die Eigenwerte häufen.
Eigenfish
Hier wird zuerst eine Matrix festgelegt, die meist die Einträge -1,0,1 hat. Dann wird für bestimmte Einträge ein kontinuierliches Intervall festgelegt, aus dem diese zufällig ausgewählt werden. Dabei entstehen interessante Muster, die sehr abstrakt werden können, vor allem wenn das Intervall aus komplexen Zahlen besteht. (s. Bsp in der Galerie)
Obere Hessenbergmatrix
Eine obere Hessenbergmatrix ist ähnlich wie eine obere Dreiecksmatrix, nur dass diese auch Einträge auf der ersten Nebendiagonalen unter der Hauptdiagonalen besitzt. Beispielsweise ist [math]\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 9 & 10 & 11 \\ 0 & 0 & 12 & 13 \end{pmatrix}[/math] eine obere Hessenbergmatrix. Analog ist [math]\begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 5 & 0 \\ 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 \end{pmatrix}[/math] eine untere Hessenbergmatrix.
Tridiagonalmatrix
Eine Tridiagonalmatrix ist sowohl eine obere als auch eine untere Hessenbergmatrix und hat somit nur Einträge auf der Hauptdiagonalen und den beiden angrenzenden Nebendiagonalen. Z.B.:[math]\begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 5 & 0 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & 9 & 10 \end{pmatrix}[/math]
Hermitesche Matrix
Die Einträge einer hermiteschen Matrix sind komplexe Zahlen. Hermitesche Matrizen gleichen ihren symmetrischen Artgenossen, allerdings muss man beim Spiegeln zusätzlich i durch –i ersetzen: [math]\begin{pmatrix} 1 & 2 & 3+i \\ 2 & 5 & 6-i \\ 3-i & 6+i & 7 \end{pmatrix}[/math]
Zufallsmatrizen
Definition
Eine Zufallsmatrix ist eine Matrix, deren Einträge teils oder ganz zufällig sind.
Eigenschaften
Es gibt offensichtlich sehr viele Methoden solche Matrizen auszuwählen, dabei kann die Wahrscheinlichkeitsverteilung, die Menge, aus der man die Einträge nimmt oder die Symmetrie der Matrizen sehr stark variieren. Wir betrachten nun symmetrische Matrizen, deren Einträge unabhängig voneinander gemäß der Normalverteilung ausgewählt sind. Für den Grenzfall von unendlicher Größe ergeben die Eigenwertabstände dieser Matrizen eine Kurve. Die Klasse der Zufallsmatrizen, deren Eigenwertabstände dieser Kurve folgen, nennt man gaußsches orthogonales Ensemble (GOE). Analog ergeben Eigenwertabstände hermiteschen Zufallsmatrizen eine andere Kurve, diese Klasse nennt man gaußsche unitäre Ensemble (GUE). Diese gehören zu den sogenannten Wigner-Verteilungen, benannt nach dem Physiker Eugene Wigner, der bei der Analyse von schweren Atomkernen auf diese Verteilungen stieß.
[math] \frac{N_{f,H} - \int f(\lambda) \, dN(\lambda)}{\sigma_{f, n}} \overset{D}{\longrightarrow} N(0, 1) [/math] |
Trallala |
---|
Test |
Bohemian Matrices
Inhalt
Galerie
Betaverteilung
Zufällige Matrix mit Einträgen aus diskreter Menge
Obere Hessenbergmatrix
Tridiagonalmatrix
Feste Matrix mit kontinuierlicher Verteilung in bestimmten Werten (Eigenfish)
Hier wurden Matrizen von der Form [math]\begin{pmatrix} 0 & 0 & 0 & A \\ -1 & -1 & 0 & 0 \\ B & 0 & 0 & 0 \\ -1 & 1 & 1 & -1 \end{pmatrix}[/math] verwendet. Die Einträge A und B wurden dabei zufällig aus einem kontinuierlichen Intervall ausgewählt.
Trivia (vor oder nach Galerie?)
Zufallsmatrizen können in den unterschiedlichsten, teils überraschenden Themengebieten genutzt werden, um (Natur-)Phänomene zu beschreiben oder Daten zu modellieren. So etwa bei:
- Abständen parkender Autos und von Bäumen im Urwald
- Verknüpfung von Neuronen im Gehirn
- Datenkompression, Mobilfunk
- Finanzwirtschaft (Fluktuation von Börsenkursen)
- der Statistik ankommender U-Bahnen in New York
Warum genau es so gut funktioniert, diese doch sehr unterschiedlichen Dinge treffend durch Zufallsmatrizen zu beschreiben, ist überwiegend unbekannt.
Nicht nur in praktischen Anwendungsgebieten werden Zufallsmatrizen benutzt: Auch bei theoretischeren Problemen in der Mathematik, wie dem Beweis der Riemannschen Vermutung, sind Zufallsmatrizen möglicherweise ein vielversprechender Ansatz, zu einer Lösung zu gelangen, bspw. über eine Matrix, von den Wissenschaftlern Riemannium getauft, deren Eigenwerte den Nullstellen der Riemannschen Zeta-Funktion entsprechen.
Auch Fraktale wie Julia- und Mandelbrotmengen tauchen im Zusammenhang mit Zufallsmatrizen auf.
Quellen und Links
Quellen