Banach-Tarski-Paradox

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen
Verdopplung eines Balles nach Banach-Tarski.

Das Banach-Tarski-Paradoxon (eng. Banach-Tarski-Paradox) oder auch Satz von Banach und Tarski ist ein Satz aus der geometrische Mengenlehre, welcher die Grenzen des anschaulichen Volumenbegriffs deutlich macht. Nach dem Satz gegeben eine Kugel in drei oder mehr Dimensionen, existiert eine Zerlgung der Kugel in endlich viele disjunkte Teilmengen bzw. Teilen, sodass sich aus den Teilen zwei Kugeln des selben Radius als die ursprüngliche Kugel konstruieren lassen. Dadurch verdoppelt sich das Volumen unersichtlich (denn eine Kugel wurde in zwei genauso große zerteilt). Dieses Paradoxon veranschaulicht somit, dass das mathematische Modell des Raumes in der Mathematik die Realität nicht an allen Eigenschaften wiederspiegelt.

Im Gegensatz zu vielen anderen Sätzen aus der Geometrie ist der Banch-Tarski Satz ziemlich abhängig von der Wahl der Axiomen. Das Axiom der Wahl (eng. Axiom of Choice) erlaubt für einen Beweis, da überabzählbar viele Wähle getroffen werden müssen. Dies folgt aus der Natur der Teilmengen in welche man den Ball zerlegt, diese sind nämlich unednlich filigran bzw. staubwolkenartig (siehe Löwenzahn[1]). Eine andere Auswahl an Axiomen gibt es aber, sodass eine solche Zerlegung und Rekonstruktion der Kugel nicht möglich sind.

Vorwissen

Hilberts Hotel:

Hilberts Hotel (eng. Hilbert's Paradox of the Grand Hotel) ist ein Gedankenexperiment, erschaffen von David Hilbert und eingeführt in seiner Vorlesung "Über das Unendliche" im Jahre 1924. Es demonstriert die konterintuitiven Eigenschaften des Unendlichen, wie z.B. die Eigenschaft, dass ein Hotel mit unendlichen Räumen und einem Gast pro Raum nicht voll besetzt ist und weitere Gäste problemlos einen Raum zugewiesen kriegen können, oder die uns wichtigere Eigenschaft, dass, wenn ein Gast das Hotel verlässt, alle anderen Gäste so umgeschoben werden können, dass wieder jeder Raum besetzt ist und das Hotel scheinbar wieder vollgebucht ist.

Da Hilberts Hotel in der Vorlesung besprochen wurde und auch schon von einer anderen Gruppe behandelt wird, werden wir den Artikel Hilberts Hotel hier verlinken.

Hilberts Hotel kann auch auf Formen angewandt werden. Wenn man aus einem Kreis einen einzigen Punkt entfernt, entsteht scheinbar eine Lücke. Da aber der Umpfang eines Kreises immer irrational ist, kann man einfach von der Lücke aus entlang dem Umpfang Strecken von einer rationalen Länge abmessen und den entsprechenden Punkt markieren (den ersten mit 1, den zweiten mit 2 etc.). Am Ende des Prozesses hat man unendlich viele Punkte markiert, mit denen man entsprechend Hilberts Hotel die Lücke einfüllen kann: Punkt 1 füllt die Lücke, Punkt 2 füllt die Lücke, die durch Punkt 2 entstanden ist und so weiter. Somit ist also Hilberts Hotel auch anwendbar auf Formen und Körper.

Hyperwebster:

Der Hyperwebster ist eine Erfindung von Dr Ian Steward, um zu veranschaulichen, wie groß unzählbare Unendlichkeit sein kann.

Der Hyperwebster ist eine Version von Webster's Dictionary, wo jede mögliche Buchstabenkombination vorkommen soll. Man starte mit dem Buchstaben A, dann AA, dann AAA, und so weiter bis man unendlich viele A's hat. Danach kommt AB, ABA, ABAA, ABAAA, ..., AC, ..., AZ, ..., B, BA, BAA, ..., Z, ZA, ZAA etc. Am Ende sieht der Hyperwebster dann ungefähr so aus:

A, AA, AAA, AAAA, ..., AB, ABA, ABAA, .... AAB, AABA, ..., AC, ... AZ, AZAA, ...

B, BA, BAA, ..., BB, BBA, ..., BZ, BZA, ...

...

Z, ZA, ZAA, ..., ZB, ZBA, ..., ZZZZZZZZZZZZZZZ...

Nun haben wir ein Wörterbuch, welches jedes mögliche Wort, jeden möglichen Satz, jede mögliche Buchstabenkombination enthält. Der Verlag möchte jetzt dieses Wörterbuch ausdrucken, es wäre aber viel zu groß. Der Verlag fasst also alle Wörter in 26 Bände zusammen, somit werden alle Wörter mit einem bestimmten Anfangsbuchstaben in einen Band gepackt.

Um jetzt Platz zu sparen, nimmt der Verlag jeden Band und streicht den Anfangsbuchstaben jedes Wortes, da jeder Anfangsbuchstabe nur ein Mal pro Band vorkommt. Dabei stellt sich heraus, dass, wenn man den Anfangsbuchstaben jedes Bandes kürzt, man wieder den Hyperwebster selbst erhält. Der Hyperwebster ist also in diesem Sinne ein sich selbst enthaltendes Fraktal, da man durch die oben beschriebene Methode aus einem Hyperwebster gleich 26 machen kann.

Paradox

Der Banach-Tarski Satz widerspricht die gängliche geometrische Intuition und wird somit oft auch Banach-Tarski Paradoxon genannt. Nach Banach-Tarski wird ein Ball in zwei weitere Bälle mit demselben Volumen zerlegt ohne den Ball zu dehnen, biegen oder neue Punkte dem Ball zuzufügen, tatsächlich werden die Teile, in welche der Ball zerlegt wird, nur rotiert und geschoben (entspricht eine Translation in der Mathematik). Es scheint unmöglich zu sein, durch diese Operationen das Volumen zu erhöhen, da sie, intuitiv betrachtet, das Volumen erhalten. Mathematisch ist es auch oft so nun kann man dieselbe Intuition bei dieser Zerlegung des Balles nicht anwenden da für die Teile in welche der Ball zerlegt wird, kein Volumen definiert werden kann.

Man kann sich die Teile in welche der Ball zerlegt wird jeweils als eine reife Löwenzahnpflanze vorstellen. Also, mathematisch gesehen, eine Sammlung an Punkten um einen Mittelpunkt zusammen mit dem Liniensegment, welcher den Punkt zum Mittelpunkt verbindet. Ein solches Konstrukt existiert in 3 Dimensionen hat aber kein Volumen.

Nach dem Widerzusammenfügen der Teile lässt sich wieder ein Volumen definieren und nun ist es so dass das Volumen anders als das urspüngliche Volumen ist (nämlich doppelt so groß). In der Realität lassen sich solche Umformungen leider nicht durchführen da der Ball in unendlich feine bzw. dünne Teile zerlegt wird.

Eine allgemeinere Version des Satzes existiert, oft informell "pea and the Sun paradox" (dt. Das Erbse-Sonne Paradoxon) genannt, besagt er dass eine Erbse in Stücke zerlegt werden kann und dass sich aus den entstehenden Stücken dann die Sonne kontruieren lässt.

Geschichte, Banach und Tarski

In einem in 1924 veröffentlichem Paper gaben Stefan Banach und Alfred Tarski eine Konstruktion einer solchen paradoxischen Zerlegung, gegründet in der früheren Arbeit von Giuseppe Vitali. Banach und Tarski haben den folgenden, allgemeineren (auch stärkeren) Satz bewiesen:

Sei [math]d \ge 3[/math] eine ganze Zahl und seien [math]X, Y\subset \mathbb{R}^d[/math] beschränkte Mengen mit nicht-leerem Inneren. Dann gibt es eine natürliche Zahl [math]n[/math] und eine disjunkte Zerlegung [math]X_1, \dots, X_n[/math] von [math]X[/math] und zugehörige Bewegung [math]\beta_1, \dots, \beta_n[/math] derart, dass [math]Y[/math] die disjunkte Vereinigung der Mengen [math]\beta_1(X_1), \dots, \beta_n(X_n)[/math] ist.

Das heißt in [math]\mathbb{R}^d:d\geq 3[/math] lässt sich eine beschränkte Menge mit nicht-leerem Inneren disjunkt zerelegen und dann in eine belibiege, beschränkte Menge mit nicht-leerem Inneren wieder disjunkt vereineigen. Da wir die durch die Zerlegung konstruierte Teilmenge nur bewegen, werden keine neue Punkten erzeugt und die Abstände zwischen allen Punkten werden paarweise erhalten. Somit folgt das Banach-Tarski Paradoxon als ein bestimmter Fall: Sei die Menge [math]X[/math] von oben ein Ball und die Menge [math]Y[/math] zwei Kopien des Balles mit denselben Radius als der Ball [math]X[/math]. Dann gilt: [math]X,Y\subset \mathbb{R^3}[/math], da Bälle per definition beschränkt sind und ein nichtleeres Innere haben. Gilt nach dem Satz dass eine disjunkte Zerlegung [math]X_1,..., X_n[/math] von [math]X[/math] zusammen mit der zugehörigen Bewegung [math]\beta _1,..., \beta _n[/math] existiert sodass [math]Y=\beta _1(X_1)\cup \beta _2(X_2)\ \cup ... \cup\ \beta _n(X_n)[/math] gilt.

Der allgemeinere Satz von Banach und Tarski gilt in einer und zwei Dimensionen nicht, denn die Bewegungsfreiheit in diesen Dimensionen zu beschränkt ist. Als Folge dessen besitzen alle Figuren, welche durch eine Zerlegung und eine zugehörige Bewegung der Teile, sich ineinander umformen lassen, denselben Flächeninhalt. Banach und Tarski haben aber gezeigt dass, wenn Zerlegungen in abzählbar viele Teile (statt endlich viele) erlaubt sind, die analoge Version des Satzes immer noch gilt.

Verwandte Paradoxen

In der Ebene

John von Neumann arbeitete an den Bedingungen unter welchen paradoxische Zerlegungen möglich sind. Des weiteren fand er eine Version des Paradoxons in der Ebene, welche affine Abbildungen die die Fläche erhalten benutzte anstatt den üblichen Kongruenzenabbildungen. Also Abbildungen die mehr Freiheit erlauben, denn die Abstände zwischen den einzelnen Punkpaaren nicht erhalten werden müssen.

Unendlich viele Bälle

Ähnlich zu dem "pea and the Sun paradox" folgt aus der stärkeren Version des Satztes dass man einen Ball in undendlich viele Kopien von sich selbst umformen kann. Indem man wieder die Teile aus der Zerlegung bloß bewegt. Der Fall mit unendlich vielen Bällen lässt sich aber auch mithilfe von dem Banach-Tarski Paradoxon beweisen[2] (der Spezialfall mir einem Ball und seiner Kopie).

Quellen