Benutzer:Jan Agatz: Unterschied zwischen den Versionen

Aus FunFacts Wiki
Zur Navigation springen Zur Suche springen
K (Positionierung verbessert.)
(LaTex-Positionierung verbessert.)
Zeile 5: Zeile 5:
 
== Motivation ==
 
== Motivation ==
 
Die Untersuchung von Gegenbeispielen lässt sich unter anderem durch folgende drei Punkte motivieren:
 
Die Untersuchung von Gegenbeispielen lässt sich unter anderem durch folgende drei Punkte motivieren:
* Gegenbeispiele können naheliegende und intuitiv richtige Aussage, die tatsächlich nicht gelten, widerlegen. So zeigt die Weierstraß-Funktion ''(Intralink einfügen)'', dass Stetigkeit auf einem Intervall nicht Differenzierbarkeit in (irgend-)einem Punkt implizieren muss.
+
* Gegenbeispiele können naheliegende und "intuitiv richtige" Aussage, die tatsächlich nicht gelten, widerlegen. So zeigt die Weierstraß-Funktion ''(Intralink einfügen)'', dass Stetigkeit auf einem Intervall nicht Differenzierbarkeit in (irgend-)einem Punkt implizieren muss.
 
* Weiter können diese beweisen, dass zwei Definitionen verschieden sind, und, je nach Situation, möglicherweise auch, wodrin diese Unterschiede liegen. So zeigt die Indikatorfunktion der rationalen Zahlen (in den reellen Zahlen), die Lebesgue-integrierbar, aber nicht Riemann-integrierbar ist, dass diese beiden Definition der Integrierbarkeit/des Integrals nicht zusammenfallen können.
 
* Weiter können diese beweisen, dass zwei Definitionen verschieden sind, und, je nach Situation, möglicherweise auch, wodrin diese Unterschiede liegen. So zeigt die Indikatorfunktion der rationalen Zahlen (in den reellen Zahlen), die Lebesgue-integrierbar, aber nicht Riemann-integrierbar ist, dass diese beiden Definition der Integrierbarkeit/des Integrals nicht zusammenfallen können.
 
* Schließlich zeigen Gegenbeispiele (einer bestimmten Aussage) meist pathologische Sonderfälle auf, die durch geschickte Wahl der Definition und Voraussetzung der Aussage ausgeschlossen werden können.
 
* Schließlich zeigen Gegenbeispiele (einer bestimmten Aussage) meist pathologische Sonderfälle auf, die durch geschickte Wahl der Definition und Voraussetzung der Aussage ausgeschlossen werden können.
Zeile 12: Zeile 12:
 
Neben der Funktionentheorie und der Topologie lassen sich auch in der Analysis viele Gegenbeispiele finden.
 
Neben der Funktionentheorie und der Topologie lassen sich auch in der Analysis viele Gegenbeispiele finden.
  
=== Die Weierstraß-Funktion ===
+
=== Die Weierstraß-Funktion (Verweise auf Quelle einfügen) ===
  
 
Die Weierstraß-Funktion <math>f:\mathbb{R} \rightarrow \mathbb{R}</math> ist eine stetige Funktion, die in keinem Punkt differenzierbar ist.  
 
Die Weierstraß-Funktion <math>f:\mathbb{R} \rightarrow \mathbb{R}</math> ist eine stetige Funktion, die in keinem Punkt differenzierbar ist.  
Zeile 18: Zeile 18:
 
Zur Definition wähle man [math]a \in (0,1)[/math] und [math]b \in \mathbb{N}[/math] ungerade, sodass <math>ab \gt 1 + \frac{3\pi}{2}</math>. Dann ist die Weierstraß-Funktion durch <math>f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sum\limits_{n = 0}^{\infty} a^n \cos\left(b^n \pi x\right)</math> gegeben.
 
Zur Definition wähle man [math]a \in (0,1)[/math] und [math]b \in \mathbb{N}[/math] ungerade, sodass <math>ab \gt 1 + \frac{3\pi}{2}</math>. Dann ist die Weierstraß-Funktion durch <math>f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sum\limits_{n = 0}^{\infty} a^n \cos\left(b^n \pi x\right)</math> gegeben.
  
Nun zeigen wir, dass
+
Man kann zeigen, dass
 
# die Weierstraß-Funktion <math>f</math> stetig ist.
 
# die Weierstraß-Funktion <math>f</math> stetig ist.
 
# die Weierstraß-Funktion <math>f</math> in keinem Punkt differenzierbar ist.
 
# die Weierstraß-Funktion <math>f</math> in keinem Punkt differenzierbar ist.
Zeile 27: Zeile 27:
 
| Man betrachte die Weierstraß-Funktion als Funktionenreihe der Funktionen <math>\left(f_n: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto a^n \cos\left(b^n\pi x\right)\right)_{n \in \mathbb{N}}</math>, die jeweils stetig in <math>x</math> sind und der Abschätzung <math>|a^n \cos\left(b^n\pi x\right)| \leq |a^n| \leq a^n</math> genügen.
 
| Man betrachte die Weierstraß-Funktion als Funktionenreihe der Funktionen <math>\left(f_n: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto a^n \cos\left(b^n\pi x\right)\right)_{n \in \mathbb{N}}</math>, die jeweils stetig in <math>x</math> sind und der Abschätzung <math>|a^n \cos\left(b^n\pi x\right)| \leq |a^n| \leq a^n</math> genügen.
  
Als geometrische Reihe konvergiert <math>\sum\limits_{n = 0}^{\infty} a^n = \frac{1}{1 - a}</math>, wodurch mit dem [https://de.wikipedia.org/wiki/Weierstraßsches_Majorantenkriterium Majorantensatz von Weierstraß] die Funktionenreihe <math>\sum\limits_{n = 0}^{\infty} a^n\cos\left(b^n\pi x\right)</math> gleichmäßig auf <math>\mathbb{R}</math> konvergiert.  
+
Als geometrische Reihe konvergiert <math>\sum\limits_{n = 0}^{\infty} a^n = \frac{1}{1 - a}</math>, sodass (über den [https://de.wikipedia.org/wiki/Weierstraßsches_Majorantenkriterium Majorantensatz von Weierstraß]) auch die Funktionenreihe <math>\sum\limits_{n = 0}^{\infty} a^n\cos\left(b^n\pi x\right)</math> gleichmäßig auf <math>\mathbb{R}</math> konvergiert.  
  
 
Nimmt man beide obigen Aussagen zusammen, so folgt bereits, dass die Weierstraß-Funktion als gleichmäßig konvergente Funktionsreihe stetiger Funktionen selbst stetig ist. ''Verweis auf Prof. Kohnen einfügen''
 
Nimmt man beide obigen Aussagen zusammen, so folgt bereits, dass die Weierstraß-Funktion als gleichmäßig konvergente Funktionsreihe stetiger Funktionen selbst stetig ist. ''Verweis auf Prof. Kohnen einfügen''
Zeile 34: Zeile 34:
 
| style="text-align:left; font-size: 100%;" | '''Beweis der Nicht-Differenzierbarkeit'''
 
| style="text-align:left; font-size: 100%;" | '''Beweis der Nicht-Differenzierbarkeit'''
 
|-
 
|-
| Sei nun <math>x_0 \in \mathbb{R}</math> ein beliebiger Punkt. Um zu zeigen, dass in diesem Punkt die Ableitung der Weierstraß-Funktion, also der Grenzwert <math>\lim\limits_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}</math>, nicht existiert, reicht es eine Folge zu finden, die gegen <math>x_0</math> konvergiert, während der Differenzenquotient keinen Grenzwert in <math>\mathbb{R}</math> besitzt.
+
| Sei nun <math>x_0 \in \mathbb{R}</math> ein beliebiger Punkt. Um zu zeigen, dass in diesem Punkt die Ableitung der Weierstraß-Funktion, also der Grenzwert <math>\lim\limits_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}</math>, nicht existiert, reicht es eine Folge zu finden, die gegen <math>x_0</math> konvergiert, während der dazugehörige Differenzenquotient keinen Grenzwert in <math>\mathbb{R}</math> besitzt.
  
 
Man wähle nun für jedes <math>m \in \mathbb{N}</math> die eindeutige ganze Zahl <math>c_m \in \mathbb{Z}</math>, sodass <math>b^m x_0 - c_m \in \left(-\frac{1}{2}, \frac{1}{2}\right]</math> gilt. Weiter definiere man für jedes <math>m \in \mathbb{N}</math> die reellen Zahlen <math>x_m := b^m x_0 - c_m</math> und <math>y_m := \frac{c_m - 1}{b^m}</math>.   
 
Man wähle nun für jedes <math>m \in \mathbb{N}</math> die eindeutige ganze Zahl <math>c_m \in \mathbb{Z}</math>, sodass <math>b^m x_0 - c_m \in \left(-\frac{1}{2}, \frac{1}{2}\right]</math> gilt. Weiter definiere man für jedes <math>m \in \mathbb{N}</math> die reellen Zahlen <math>x_m := b^m x_0 - c_m</math> und <math>y_m := \frac{c_m - 1}{b^m}</math>.   
  
Für diese gilt die Ungleichung <math>y_m - x_0 = - \frac{1 + x_m}{b^m} \lt 0 </math>, also <math>y_m \lt x_0</math>. Insbesondere gilt nun:  
+
Für diese gelten die Ungleichung <math>y_m - x_0 = - \frac{1 + x_m}{b^m} \lt 0 </math>, also <math>y_m \lt x_0</math>. Insbesondere folgt nun:  
 
* <math>\lim\limits_{m \to \infty} |y_m - x_0| = \lim\limits_{m \to \infty} x_0 - y_m = \lim\limits_{m \to \infty} \frac{1 + x_m}{b^m} = 0</math>.
 
* <math>\lim\limits_{m \to \infty} |y_m - x_0| = \lim\limits_{m \to \infty} x_0 - y_m = \lim\limits_{m \to \infty} \frac{1 + x_m}{b^m} = 0</math>.
  
 
Die Folge <math>(y_m)_{m \in \mathbb{N}}</math> konvergiert also von unten gegen <math>x_0</math>.
 
Die Folge <math>(y_m)_{m \in \mathbb{N}}</math> konvergiert also von unten gegen <math>x_0</math>.
Weiter gilt: <math>\frac{f(y_m) - f(x_0)}{y_m - x_0} = \frac{\sum\limits_{n = 0}^{\infty}a^n\cos\left(b^n\pi y_m\right) - \sum\limits_{n = 0}^{\infty}a^n\cos\left(b^n\pi x_0\right)}{y_m - x_0} \\  
+
 
 +
 
 +
Weiter gilt:
 +
 
 +
<math>\phantom{=}\frac{f(y_m) - f(x_0)}{y_m - x_0} = \frac{\sum\limits_{n = 0}^{\infty}a^n\cos\left(b^n\pi y_m\right) - \sum\limits_{n = 0}^{\infty}a^n\cos\left(b^n\pi x_0\right)}{y_m - x_0} \\  
 
= \sum\limits_{n = 0}^{\infty} a^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{y_m - x_0} \\
 
= \sum\limits_{n = 0}^{\infty} a^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{y_m - x_0} \\
 
= \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = m}^{\infty} a^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{y_m - x_0} \\
 
= \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = m}^{\infty} a^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{y_m - x_0} \\
 
= \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0}
 
= \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0}
 
</math>.
 
</math>.
 +
  
 
Die erste Summe lässt sich nun mithilfe einer [https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Summen_zweier_trigonometrischer_Funktionen_(Identitäten) trigonometrischen Identität] umformen; dann gilt:
 
Die erste Summe lässt sich nun mithilfe einer [https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Summen_zweier_trigonometrischer_Funktionen_(Identitäten) trigonometrischen Identität] umformen; dann gilt:
<math>\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)}\\  
+
 
 +
<math>\phantom{=}\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)}\\  
 
=\sum\limits_{n = 0}^{m - 1} \frac{-2(ab)^n }{b^n(y_m - x_0)}\sin\left(\frac{b^n\pi(y_m + x_0)}{2}\right)\sin\left(\frac{b^n\pi(y_m - x_0)}{2}\right) \\
 
=\sum\limits_{n = 0}^{m - 1} \frac{-2(ab)^n }{b^n(y_m - x_0)}\sin\left(\frac{b^n\pi(y_m + x_0)}{2}\right)\sin\left(\frac{b^n\pi(y_m - x_0)}{2}\right) \\
 
= \sum\limits_{n = 0}^{m - 1}-\pi(ab)^n\sin\left(\frac{b^n\pi(y_m + x_0)}{2}\right)\frac{\sin\left(\frac{b^n\pi(y_m - x_0)}{2}\right)}{\frac{b^n\pi(y_m - x_0)}{2}}
 
= \sum\limits_{n = 0}^{m - 1}-\pi(ab)^n\sin\left(\frac{b^n\pi(y_m + x_0)}{2}\right)\frac{\sin\left(\frac{b^n\pi(y_m - x_0)}{2}\right)}{\frac{b^n\pi(y_m - x_0)}{2}}
 
</math>.
 
</math>.
  
Verwendet man nun die Dreiecks-Ungleichung und den Fakt, dass <math>\left|\frac{\sin(x)}{x}\right| \leq |\cos(x)| \leq 1</math> für alle <math>x \in \mathbb{R}\setminus\{0\}</math>, so ergibt sich weiter die Abschätzung  
+
Verwendet man nun die Dreiecks-Ungleichung und den Fakt, dass <math>\left|\frac{\sin(x)}{x}\right| \leq 1</math> für alle <math>x \in \mathbb{R}\setminus\{0\}</math>, so ergibt sich weiter die Abschätzung:
<math>\left|\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)}\right| \\
+
 
 +
<math>\phantom{=}\left|\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)}\right|
 
\leq \sum\limits_{n = 0}^{m - 1}\pi (ab)^n = \pi\frac{(ab)^m - 1}{ab - 1} \lt \pi \frac{(ab)^m}{ab - 1}</math>.
 
\leq \sum\limits_{n = 0}^{m - 1}\pi (ab)^n = \pi\frac{(ab)^m - 1}{ab - 1} \lt \pi \frac{(ab)^m}{ab - 1}</math>.
  
 
Es existiert also ein <math>\epsilon \in (-1, 1)</math>, sodass <math>\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} = \epsilon \pi \frac{(ab)^m}{ab - 1}</math>.
 
Es existiert also ein <math>\epsilon \in (-1, 1)</math>, sodass <math>\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} = \epsilon \pi \frac{(ab)^m}{ab - 1}</math>.
 +
  
 
Für die Terme in der zweiten Summe lassen sich folgende Vereinfachungen finden, wenn man beachtet, dass <math>b</math> eine ungerade und <math>c_m</math> eine beliebige ganze Zahl ist:
 
Für die Terme in der zweiten Summe lassen sich folgende Vereinfachungen finden, wenn man beachtet, dass <math>b</math> eine ungerade und <math>c_m</math> eine beliebige ganze Zahl ist:
 
* <math>\cos\left(b^{n + m}\pi y_m\right) = \cos\left(b^n\pi (c_m - 1)\right) = (-1)^{b^n (c_m - 1)} = (-1)^{c_m - 1} = -(-1)^{c_m}</math>
 
* <math>\cos\left(b^{n + m}\pi y_m\right) = \cos\left(b^n\pi (c_m - 1)\right) = (-1)^{b^n (c_m - 1)} = (-1)^{c_m - 1} = -(-1)^{c_m}</math>
 
Und mit dem [https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Additionstheoreme trigonometrischen Additionstheorem für den Kosinus] erhält man:
 
Und mit dem [https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Additionstheoreme trigonometrischen Additionstheorem für den Kosinus] erhält man:
* <math>\cos\left(b^{n + m}\pi x_0\right) = \cos\left(b^n\pi(x_m + c_m)\right) = \cos\left(b^n\pi x_m\right)\cos\left(b^n \pi c_m\right) - \sin\left(b^n \pi x_m\right)\sin\left(b^n \pi c_m\right) \\ = (-1)^{b^n c_m}\cos\left(b^n \pi c_m\right) - 0 = (-1)^{c_m}\cos\left(b^n\pi c_m\right)</math>.
+
* <math>\cos\left(b^{n + m}\pi x_0\right) = \cos\left(b^n\pi(x_m + c_m)\right) = \cos\left(b^n\pi x_m\right)\cos\left(b^n \pi c_m\right) - \sin\left(b^n \pi x_m\right)\sin\left(b^n \pi c_m\right) = (-1)^{b^n c_m}\cos\left(b^n \pi c_m\right) - 0 = (-1)^{c_m}\cos\left(b^n\pi c_m\right)</math>.
  
Damit ergibt sich:<math>\sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} \\
+
 
 +
Damit ergibt sich:
 +
 
 +
<math>\phantom{=}\sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} \\
 
= \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{-(-1)^{c_m} - (-1)^{c_m}\cos\left(b^n\pi x_m\right)}{y_m - x_0} \\
 
= \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{-(-1)^{c_m} - (-1)^{c_m}\cos\left(b^n\pi x_m\right)}{y_m - x_0} \\
 
= \sum\limits_{n = 0}^{\infty} a^{n + m}(-1)(-1)^{c_m} \frac{1 + \cos\left(b^n\pi x_m\right)}{-\frac{1 + x_m}{b^n}} \\
 
= \sum\limits_{n = 0}^{\infty} a^{n + m}(-1)(-1)^{c_m} \frac{1 + \cos\left(b^n\pi x_m\right)}{-\frac{1 + x_m}{b^n}} \\
= (ab)^m(-1)^{c_m}\sum\limits_{n = 0}^{\infty} a^{n} \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m}
+
= (ab)^m(-1)^{c_m}\sum\limits_{n = 0}^{\infty} a^{n} \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m}.
 
</math>
 
</math>
  
Beachtet man, dass <math>x_m \in \left(-\frac{1}{2}, \frac{1}{2}\right]</math>, so ergibt sich, dass alle Terme der obigen Summe positiv sind. Lässt man alle Terme für <math>n \geq 1</math> weg, so ergibt sich die Abschätzung:
 
  
<math>\sum\limits_{n = 0}^{\infty} a^n \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} \geq \frac{1 + \cos\left(\pi x_m\right)}{1 + x_m} \geq \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}</math>,
+
Beachtet man, dass <math>x_m \in \left(-\frac{1}{2}, \frac{1}{2}\right]</math>, so folgt, dass alle Terme der obigen Summe positiv sind. Lässt man alle Terme für <math>n \geq 1</math> weg, so ergibt sich die Abschätzung:
 +
 
 +
<math>\phantom{=}\sum\limits_{n = 0}^{\infty} a^n \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} \geq \frac{1 + \cos\left(\pi x_m\right)}{1 + x_m} \geq \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}</math>,
  
 
es gibt also ein <math>\eta \geq 1</math>, sodass <math>(ab)^m(-1)^{c_m}\sum\limits_{n = 0}^{\infty} a^{n} \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} = \frac{2}{3}(ab)^m(-1)^{c_m}\eta</math>.
 
es gibt also ein <math>\eta \geq 1</math>, sodass <math>(ab)^m(-1)^{c_m}\sum\limits_{n = 0}^{\infty} a^{n} \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} = \frac{2}{3}(ab)^m(-1)^{c_m}\eta</math>.
 +
  
 
Fügt man nun die Ausdrücke für beide Summen zusammen, so erhält man:
 
Fügt man nun die Ausdrücke für beide Summen zusammen, so erhält man:
  
<math>\frac{f(y_m) - f(x_0)}{y_m - x_0} = \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} = \epsilon\frac{\pi(ab)^m}{ab - 1} + \frac{2}{3}(ab)^m(-1)^{c_m}\eta = (-1)^{c_m}(ab)^m\eta\left(\frac{2}{3} + (-1)^{c_m}\frac{\epsilon}{\eta}\frac{\pi}{ab - 1}\right)</math>.
+
<math>\phantom{=}\frac{f(y_m) - f(x_0)}{y_m - x_0} = \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} = \epsilon\frac{\pi(ab)^m}{ab - 1} + \frac{2}{3}(ab)^m(-1)^{c_m}\eta = (-1)^{c_m}(ab)^m\eta\left(\frac{2}{3} + (-1)^{c_m}\frac{\epsilon}{\eta}\frac{\pi}{ab - 1}\right)</math>.
  
Erinnert man sich, dass <math>a</math> und <math>b</math> so gewählt wurden, dass <math>ab \gt 1 + \frac{3\pi}{2} \iff\frac{\pi}{ab - 1} = \frac{2}{3}</math> und weiter <math>|\epsilon| \lt 1 </math> und <math>\eta \geq 1</math> gilt, so ergibt sich:
 
  
<math>\frac{2}{3} + (-1)^{c_m}\frac{\epsilon}{\eta}\frac{\pi}{ab - 1} \gt \frac{2}{3} - \frac{\pi}{ab - 1} \gt 0</math>.
+
Erinnert man sich, dass <math>a</math> und <math>b</math> so gewählt wurden, dass <math>ab \gt 1 + \frac{3\pi}{2} \iff \frac{\pi}{ab - 1} = \frac{2}{3}</math> und weiter <math>|\epsilon| \lt 1 </math> und <math>\eta \geq 1</math> gelten, so ergibt sich:
 +
 
 +
<math>\phantom{=}\frac{2}{3} + (-1)^{c_m}\frac{\epsilon}{\eta}\frac{\pi}{ab - 1} \gt \frac{2}{3} - \frac{\pi}{ab - 1} \gt 0</math>.
 +
 
  
 
Insbesondere folgt:
 
Insbesondere folgt:
  
<math>\left|\frac{f(y_m) - f(x_0)}{y_m - x_0}\right| \gt (ab)^m\left(\frac{2}{3} - \frac{\pi}{ab - 1}\right) \rightarrow \infty</math>,
+
<math>\phantom{=}\left|\frac{f(y_m) - f(x_0)}{y_m - x_0}\right| \gt (ab)^m\left(\frac{2}{3} - \frac{\pi}{ab - 1}\right) \rightarrow \infty</math>,
  
 
sodass <math>f</math> nicht in <math>x_0</math> differenzierbar sein kann. Da <math>x_0</math> beliebig gewählt war, ist die Weierstraß-Funktion <math>f</math> also nirgendwo differenzierbar.  
 
sodass <math>f</math> nicht in <math>x_0</math> differenzierbar sein kann. Da <math>x_0</math> beliebig gewählt war, ist die Weierstraß-Funktion <math>f</math> also nirgendwo differenzierbar.  
 
|}
 
|}
  
=== Die modifizierte Dirichlet-Funktion ===
+
=== Die modifizierte Dirichlet-Funktion (Verweise auf Quelle einfügen)===
Eine weitere interessante Funktion, die das intuitive Verständnis der Stetigkeit herausfordert, ist die modifizierte Dirichlet-Funktion, gegeben durch <math>g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \begin{cases}\frac{1}{q} & \text{für } x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q} \end{cases}</math>, welche in den rationalen Zahlen <math>\mathbb{Q}</math> unstetig und in den irrationalen Zahlen <math>\mathbb{R}\setminus\mathbb{Q}</math> stetig ist.
+
Eine weitere interessante Funktion, die das intuitive Verständnis der Stetigkeit herausfordert, ist die modifizierte Dirichlet-Funktion.
 +
 
 +
Diese ist definiert durch <math>g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \begin{cases}\frac{1}{q} & \text{für } x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q} \end{cases}</math>, sodass die Funktion folgende sonderbaren Eigenschaften hat:
 +
# Sie ist in den rationalen Zahlen <math>\mathbb{Q}</math> unstetig.
 +
# Sie ist in den irrationalen Zahlen <math>\mathbb{R}\setminus\mathbb{Q}</math> stetig.
  
 
{| class="wikitable left mw-collapsible mw-collapsed font-size: 100%;"
 
{| class="wikitable left mw-collapsible mw-collapsed font-size: 100%;"
 
| style="text-align:left; font-size: 100%;" | '''Beweis der Unstetigkeit in den rationalen Zahlen'''
 
| style="text-align:left; font-size: 100%;" | '''Beweis der Unstetigkeit in den rationalen Zahlen'''
 
|-
 
|-
| Wir zeigen zuerst die Unstetigkeit in den rationalen Zahlen. Dafür sei <math>x \in \mathbb{Q}</math> eine beliebige rationale Zahl, sowie <math>p \in \mathbb{Z}, q \in \mathbb{N}</math> die (eindeutigen) teilerfremden ganzen Zahlen, sodass <math>x = \frac{p}{q}</math>. Damit gilt dann: <math>g(x_0) = \frac{1}{q}</math>.
+
| Wir zeigen zuerst die Unstetigkeit in den rationalen Zahlen.  
  
Sei nun <math>0 \lt \epsilon \leq \frac{1}{q}</math>. Es ist bekannt, dass für jedes <math>\delta \in \mathbb{R}_{\gt 0}</math> unendlich viele (und damit auch mindestens eine) irrationale Zahlen in der Umgebung <math>U_\delta (x_0) = (x_0 - \delta, x_0 + \delta)</math> liegen. Für eine beliebige irrationale Zahl <math>x \in U_\delta (x_0) \cap \mathbb{R}\setminus\mathbb{Q}</math> gilt nun: <math>|f(x_0) - f(x)| = |\frac{1}{q} - 0| = \frac{1}{q} \geq \varepsilon</math>.
+
Dafür sei <math>x \in \mathbb{Q}</math> eine beliebige rationale Zahl, sowie <math>p \in \mathbb{Z}, q \in \mathbb{N}</math> die (eindeutigen) teilerfremden ganzen Zahlen, sodass <math>x = \frac{p}{q}</math>. Damit gilt dann: <math>g(x_0) = \frac{1}{q}</math>.
 +
 
 +
Sei nun <math>0 \lt \epsilon \leq \frac{1}{q}</math>. Es ist bekannt, dass für jedes <math>\delta \in \mathbb{R}_{\gt 0}</math> unendlich viele irrationale Zahlen in der Umgebung <math>U_\delta (x_0) = (x_0 - \delta, x_0 + \delta)</math> liegen. Für eine beliebige irrationale Zahl <math>x \in U_\delta (x_0) \cap \mathbb{R}\setminus\mathbb{Q}</math> gilt nun: <math>|f(x_0) - f(x)| = |\frac{1}{q} - 0| = \frac{1}{q} \geq \varepsilon</math>.
  
 
Da <math>\delta</math> beliebig gewählt war, kann <math>g</math> nicht stetig in <math>x_0</math> sein. Da <math>x_0</math> beliebig gewählt war, ist nirgendwo in <math>\mathbb{Q}</math> stetig.
 
Da <math>\delta</math> beliebig gewählt war, kann <math>g</math> nicht stetig in <math>x_0</math> sein. Da <math>x_0</math> beliebig gewählt war, ist nirgendwo in <math>\mathbb{Q}</math> stetig.
Zeile 108: Zeile 129:
 
| style="text-align:left; font-size: 100%;" | '''Beweis der Stetigkeit in den irrationalen Zahlen'''&nbsp;&nbsp;
 
| style="text-align:left; font-size: 100%;" | '''Beweis der Stetigkeit in den irrationalen Zahlen'''&nbsp;&nbsp;
 
|-
 
|-
| Nun zeigen wir, dass <math>g</math> in den irrationalen Zahlen stetig ist. Sei dafür <math>x \in \mathbb{R}\setminus\mathbb{Q}</math> eine beliebige irrationale Zahl und <math>\varepsilon \gt 0</math>. Nun setze man <math>\delta_1 = \varepsilon</math>. Weiter bezeichne <math>M_{\delta_1} := \{y \in (x_0 - \delta_1, x_0 + \delta_1) | \varepsilon \leq |g(y) - g(x_0)| = |g(y)|\}</math> die Menge aller Punkte im Intervall <math>(x_0 - \delta_1, x_0 + \delta_1)</math>, die die "Stetigkeitsungleichung" <math>|g(y) - g(x_0)| \geq \varepsilon</math> nicht erfüllen.
+
| Nun zeigen wir, dass <math>g</math> in den irrationalen Zahlen stetig ist.  
 +
 
 +
Sei dafür <math>x \in \mathbb{R}\setminus\mathbb{Q}</math> eine beliebige irrationale Zahl und <math>\varepsilon \gt 0</math>.  
 +
 
 +
Nun setze man <math>\delta_1 = \varepsilon</math>. Weiter bezeichne <math>M_{\delta_1} := \{y \in (x_0 - \delta_1, x_0 + \delta_1) | \varepsilon \leq |g(y) - g(x_0)| = |g(y)|\}</math> die Menge aller Punkte im Intervall <math>(x_0 - \delta_1, x_0 + \delta_1)</math>, die die ''Stetigkeitsungleichung'' <math>|g(y) - g(x_0)| \leq \varepsilon</math> nicht erfüllen.
  
Per Konstruktion der Funktion <math>g</math>, gilt für die Menge <math>\mathbb{R}\setminus\mathbb{Q}</math> der irrationalen Zahlen bereits, dass <math>g\left(\mathbb{R}\setminus\mathbb{Q}\right) \equiv 0</math>, also <math>M_{\delta_1} \subseteq \mathbb{Q}</math>. Sei nun also <math>x = \frac{p}{q} \in M_{\delta_1} \subseteq \mathbb{Q}</math>. Nun gilt <math>\frac{1}{q} = g(x) = |g(x)| = |g(x) - g(x_0)| \geq \varepsilon</math>, also auch <math>q \leq \frac{1}{\varepsilon}</math>. Da die Menge <math>N := \{n \in \mathbb{N} | n \leq \frac{1}{\varepsilon}\}</math> offensichtlich endlich ist, können nur endlich viele Nenner <math>q_1, q_2, ..., q_n \in N</math> in den (rationalen) Zahlen aus <math>M_{\delta_1}</math> vorkommen. Da <math>(x_0 - \delta_1, x_0 + \delta_1)</math> beschränkt ist, können somit nur endlich viele rationale Zahlen mit Nennern <math>q_1, q_2, ..., q_n</math> in <math>(x_0 - \delta_1, x_0 + \delta_1)</math> und somit in <math>M_{\delta_1}</math> sein. Da <math>M_{\delta_1}</math> in den rationalen Zahlen enthalten ist, ist <math>M_{\delta_1}</math> somit endlich. Es kann also ohne Probleme ein <math>0 \lt \delta_0 \leq \delta_1</math> gefunden werden, sodass <math>(x_0 - \delta_0, x_0 + \delta_0) \cap M_{\delta_1} = \emptyset</math>.
+
Per Konstruktion der Funktion <math>g</math>, gilt für die Menge <math>\mathbb{R}\setminus\mathbb{Q}</math> der irrationalen Zahlen bereits, dass <math>g\left(\mathbb{R}\setminus\mathbb{Q}\right) \equiv 0</math>, also <math>M_{\delta_1} \subseteq \mathbb{Q}</math>.  
 +
 
 +
Sei nun also <math>x = \frac{p}{q} \in M_{\delta_1} \subseteq \mathbb{Q}</math>. Es gilt <math>\frac{1}{q} = g(x) = |g(x)| = |g(x) - g(x_0)| \geq \varepsilon</math>, also auch <math>q \leq \frac{1}{\varepsilon}</math>.  
 +
 
 +
Da die Menge <math>N := \{n \in \mathbb{N} | n \leq \frac{1}{\varepsilon}\}</math> offensichtlich endlich ist, können nur endlich viele Nenner <math>q_1, q_2, ..., q_n \in N</math> in den (rationalen) Zahlen aus <math>M_{\delta_1}</math> vorkommen. Da <math>(x_0 - \delta_1, x_0 + \delta_1)</math> beschränkt ist, können somit nur endlich viele rationale Zahlen mit Nennern <math>q_1, q_2, ..., q_n</math> in <math>(x_0 - \delta_1, x_0 + \delta_1)</math> und somit in <math>M_{\delta_1}</math> sein. Da <math>M_{\delta_1}</math> in den rationalen Zahlen enthalten ist, ist <math>M_{\delta_1}</math> somit endlich.  
 +
 
 +
Es kann also ohne Probleme ein <math>0 \lt \delta_0 \leq \delta_1</math> gefunden werden, sodass <math>(x_0 - \delta_0, x_0 + \delta_0) \cap M_{\delta_1} = \emptyset</math>.
 
    
 
    
 
Per Konstruktion von <math>M_{\delta_1}</math> und <math>\delta_0</math> gilt nun insbesondere, dass <math>g((x_0 - \delta_0, x_0 + \delta_0)) \subseteq (g(x_0) - \varepsilon, g(x_0) + \varepsilon)</math>. Da <math>\varepsilon</math> beliebig gewählt war, ist <math>g</math> in <math>x_0</math> stetig. Da <math>x_0</math> beliebig (aus den irrationalen Zahlen <math>\mathbb{R}\setminus\mathbb{Q}</math>) gewählt war, ist <math>g</math> in den irrationalen Zahlen <math>\mathbb{R}\setminus\mathbb{Q}</math> stetig.
 
Per Konstruktion von <math>M_{\delta_1}</math> und <math>\delta_0</math> gilt nun insbesondere, dass <math>g((x_0 - \delta_0, x_0 + \delta_0)) \subseteq (g(x_0) - \varepsilon, g(x_0) + \varepsilon)</math>. Da <math>\varepsilon</math> beliebig gewählt war, ist <math>g</math> in <math>x_0</math> stetig. Da <math>x_0</math> beliebig (aus den irrationalen Zahlen <math>\mathbb{R}\setminus\mathbb{Q}</math>) gewählt war, ist <math>g</math> in den irrationalen Zahlen <math>\mathbb{R}\setminus\mathbb{Q}</math> stetig.
Zeile 117: Zeile 148:
  
 
Die [[Cantor-Menge#Cantorfunktion|Cantor-Funktion]] <math>f: [0,1] \rightarrow [0,1]</math> ist ein Funktion, die auf der ebenso unintuitiven [[Cantor-Menge]] <math>C \subset [0,1]</math> aufbaut und folgende Eigenschaften besitzt:
 
Die [[Cantor-Menge#Cantorfunktion|Cantor-Funktion]] <math>f: [0,1] \rightarrow [0,1]</math> ist ein Funktion, die auf der ebenso unintuitiven [[Cantor-Menge]] <math>C \subset [0,1]</math> aufbaut und folgende Eigenschaften besitzt:
# Sie ist monoton wachsend, beginnend mit <math>f(0) = 0</math> und endend mit <math>f(1) = 1</math>.
+
# Sie ist monoton wachsend, beginnend bei <math>f(0) = 0</math> und endend bei <math>f(1) = 1</math>.
 
# Sie ist in den Punkten <math>[0,1] \setminus C</math> differenzierbar und ihre Ableitung besitzt dort jeweils den Wert <math>0</math>.
 
# Sie ist in den Punkten <math>[0,1] \setminus C</math> differenzierbar und ihre Ableitung besitzt dort jeweils den Wert <math>0</math>.
  
=== Die Indikatorfunktion der rationalen Zahlen <math>\mathbb{Q}</math> ===
+
=== Die Indikatorfunktion der rationalen Zahlen <math>\mathbb{Q}</math> (Verweis einfügen)===
Ein letztes Gegenbeispiel der Analysis, welches bereits in dem Abschnitt [[Gegenbeispiele der Funktionentheorie und Analysis#Motivation|"Motivation"]]  angesprochen wurde, ist die [https://de.wikipedia.org/wiki/Indikatorfunktion Indikatorfunktion] <math>\chi_{\mathbb{Q}}: \mathbb{R} \rightarrow \{0,1\}, x \mapsto \begin{cases}1 & \text{für } x \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q}\end{cases}</math> der rationalen Zahlen <math>\mathbb{Q}</math> in den reellen Zahlen <math>\mathbb{R}</math>, welche die Unterschiedlichkeit der [https://de.wikipedia.org/wiki/Lebesgue-Integral Lebesgue]- und [https://de.wikipedia.org/wiki/Riemannsches_Integral Riemann]-Integrierbarkeit zeigt.
+
Ein letztes Gegenbeispiel der Analysis ist die [https://de.wikipedia.org/wiki/Indikatorfunktion Indikatorfunktion] <math>\chi_{\mathbb{Q}}: \mathbb{R} \rightarrow \{0,1\}, x \mapsto \begin{cases}1 & \text{für } x \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q}\end{cases}</math> der rationalen Zahlen <math>\mathbb{Q}</math> in den reellen Zahlen <math>\mathbb{R}</math>, welche die Unterschiedlichkeit der [https://de.wikipedia.org/wiki/Lebesgue-Integral Lebesgue]- und [https://de.wikipedia.org/wiki/Riemannsches_Integral Riemann]-Integrierbarkeit zeigt.
  
 
Denn für ebendiese Funktion <math>\chi_{\mathbb{Q}}</math> lässt sich zeigen, dass sie:
 
Denn für ebendiese Funktion <math>\chi_{\mathbb{Q}}</math> lässt sich zeigen, dass sie:
Zeile 137: Zeile 168:
 
| Bekanntermaßen impliziert die Riemann-Integrierbarkeit einer Funktion <math>f</math>, dass sie der gleichmäßige Grenzwert einer Folge <math>(t_n)_{n \in \mathbb{N}}</math> von Treppenfunktionen ist, also <math>\lim\limits_{n \rightarrow \infty}\|f - t_n\|_\infty = \lim\limits_{n \rightarrow \infty}\sup\limits_{x \in \mathbb{R}}|f(x) - t_n(x)| = 0</math> gilt. ''Verweis auf Prof. Kohnen angeben.''
 
| Bekanntermaßen impliziert die Riemann-Integrierbarkeit einer Funktion <math>f</math>, dass sie der gleichmäßige Grenzwert einer Folge <math>(t_n)_{n \in \mathbb{N}}</math> von Treppenfunktionen ist, also <math>\lim\limits_{n \rightarrow \infty}\|f - t_n\|_\infty = \lim\limits_{n \rightarrow \infty}\sup\limits_{x \in \mathbb{R}}|f(x) - t_n(x)| = 0</math> gilt. ''Verweis auf Prof. Kohnen angeben.''
  
Betrachtet man nun die Funktion <math>f = \chi_\mathbb{Q}</math>, so sieht man schnell ein, dass diese kein gleichmäßiger Grenzwert von Treppenfunktionen sein kann, da für jede beliebige Treppenfunktion mit beliebigen Stützpunkten und beliebigen Werten zwischen diesen Stützpunkten immer <math>\lim\limits_{n \rightarrow \infty}\|\chi_\mathbb{Q} - t_n\|_\infty \geq \frac{1}{2} \neq 0</math> gilt. Denn in dem Intervall zwischen je zwei Stützpunkten einer Treppenfunktion (auf dem die Treppenfunktion per Definition konstant einen Wert <math>w \in \mathbb{R}</math> annimmt) liegen (jeweils unendlich viele, also auch jeweils mindestens eine) rationale Zahl <math>x \in \mathbb{Q}</math> und eine irrationale Zahl <math>y \in \mathbb{R}\setminus\mathbb{Q}</math> mit <math>\chi_\mathbb{Q}(x) = 1</math> und <math>\chi_\mathbb{Q}(y) = 0</math>. Offensichtlich gilt nun <math>max\{|\chi_\mathbb{Q}(x) - w|, |\chi_\mathbb{Q}(y) - w|\} \geq \frac{1}{2}</math>. ''(Satzstruktur verbessern)''
+
Betrachtet man nun die Funktion <math>f = \chi_\mathbb{Q}</math>, so sieht man schnell ein, dass diese kein gleichmäßiger Grenzwert von Treppenfunktionen sein kann, da für jede beliebige Treppenfunktion mit beliebigen Stützpunkten und beliebigen Werten zwischen diesen Stützpunkten immer <math>\lim\limits_{n \rightarrow \infty}\|\chi_\mathbb{Q} - t_n\|_\infty \geq \frac{1}{2} \neq 0</math> gilt.  
 +
 
 +
Dies liegt daran, dass in dem Intervall zwischen zwei Stützpunkten einer Treppenfunktion (auf dem die Treppenfunktion per Definition konstant einen Wert <math>w \in \mathbb{R}</math> annimmt) jeweils eine rationale Zahl <math>x \in \mathbb{Q}</math> und eine irrationale Zahl <math>y \in \mathbb{R}\setminus\mathbb{Q}</math> mit <math>\chi_\mathbb{Q}(x) = 1</math> und <math>\chi_\mathbb{Q}(y) = 0</math> liegen. Offensichtlich gilt nun <math>max\{|\chi_\mathbb{Q}(x) - w|, |\chi_\mathbb{Q}(y) - w|\} \geq \frac{1}{2}</math>.
 
|}
 
|}
 
<references group="Prof. Kohnen" />
 
<references group="Prof. Kohnen" />

Version vom 6. April 2021, 22:22 Uhr

Willkommen auf meiner Benutzerseite für das Wiki-Projekt "Fun Facts" der Uni Heidelberg!

Hier findet sich ein Prototyp meines Teiles des Wiki-Artikels Gegenbeispiele der Funktionentheorie und Analysis.

Motivation

Die Untersuchung von Gegenbeispielen lässt sich unter anderem durch folgende drei Punkte motivieren:

  • Gegenbeispiele können naheliegende und "intuitiv richtige" Aussage, die tatsächlich nicht gelten, widerlegen. So zeigt die Weierstraß-Funktion (Intralink einfügen), dass Stetigkeit auf einem Intervall nicht Differenzierbarkeit in (irgend-)einem Punkt implizieren muss.
  • Weiter können diese beweisen, dass zwei Definitionen verschieden sind, und, je nach Situation, möglicherweise auch, wodrin diese Unterschiede liegen. So zeigt die Indikatorfunktion der rationalen Zahlen (in den reellen Zahlen), die Lebesgue-integrierbar, aber nicht Riemann-integrierbar ist, dass diese beiden Definition der Integrierbarkeit/des Integrals nicht zusammenfallen können.
  • Schließlich zeigen Gegenbeispiele (einer bestimmten Aussage) meist pathologische Sonderfälle auf, die durch geschickte Wahl der Definition und Voraussetzung der Aussage ausgeschlossen werden können.

Gegenbeispiele der Analysis

Neben der Funktionentheorie und der Topologie lassen sich auch in der Analysis viele Gegenbeispiele finden.

Die Weierstraß-Funktion (Verweise auf Quelle einfügen)

Die Weierstraß-Funktion [math]f:\mathbb{R} \rightarrow \mathbb{R}[/math] ist eine stetige Funktion, die in keinem Punkt differenzierbar ist.

Zur Definition wähle man [math]a \in (0,1)[/math] und [math]b \in \mathbb{N}[/math] ungerade, sodass [math]ab \gt 1 + \frac{3\pi}{2}[/math]. Dann ist die Weierstraß-Funktion durch [math]f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sum\limits_{n = 0}^{\infty} a^n \cos\left(b^n \pi x\right)[/math] gegeben.

Man kann zeigen, dass

  1. die Weierstraß-Funktion [math]f[/math] stetig ist.
  2. die Weierstraß-Funktion [math]f[/math] in keinem Punkt differenzierbar ist.
Beweis der Stetigkeit  
Man betrachte die Weierstraß-Funktion als Funktionenreihe der Funktionen [math]\left(f_n: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto a^n \cos\left(b^n\pi x\right)\right)_{n \in \mathbb{N}}[/math], die jeweils stetig in [math]x[/math] sind und der Abschätzung [math]|a^n \cos\left(b^n\pi x\right)| \leq |a^n| \leq a^n[/math] genügen.

Als geometrische Reihe konvergiert [math]\sum\limits_{n = 0}^{\infty} a^n = \frac{1}{1 - a}[/math], sodass (über den Majorantensatz von Weierstraß) auch die Funktionenreihe [math]\sum\limits_{n = 0}^{\infty} a^n\cos\left(b^n\pi x\right)[/math] gleichmäßig auf [math]\mathbb{R}[/math] konvergiert.

Nimmt man beide obigen Aussagen zusammen, so folgt bereits, dass die Weierstraß-Funktion als gleichmäßig konvergente Funktionsreihe stetiger Funktionen selbst stetig ist. Verweis auf Prof. Kohnen einfügen

Beweis der Nicht-Differenzierbarkeit
Sei nun [math]x_0 \in \mathbb{R}[/math] ein beliebiger Punkt. Um zu zeigen, dass in diesem Punkt die Ableitung der Weierstraß-Funktion, also der Grenzwert [math]\lim\limits_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}[/math], nicht existiert, reicht es eine Folge zu finden, die gegen [math]x_0[/math] konvergiert, während der dazugehörige Differenzenquotient keinen Grenzwert in [math]\mathbb{R}[/math] besitzt.

Man wähle nun für jedes [math]m \in \mathbb{N}[/math] die eindeutige ganze Zahl [math]c_m \in \mathbb{Z}[/math], sodass [math]b^m x_0 - c_m \in \left(-\frac{1}{2}, \frac{1}{2}\right][/math] gilt. Weiter definiere man für jedes [math]m \in \mathbb{N}[/math] die reellen Zahlen [math]x_m := b^m x_0 - c_m[/math] und [math]y_m := \frac{c_m - 1}{b^m}[/math].

Für diese gelten die Ungleichung [math]y_m - x_0 = - \frac{1 + x_m}{b^m} \lt 0 [/math], also [math]y_m \lt x_0[/math]. Insbesondere folgt nun:

  • [math]\lim\limits_{m \to \infty} |y_m - x_0| = \lim\limits_{m \to \infty} x_0 - y_m = \lim\limits_{m \to \infty} \frac{1 + x_m}{b^m} = 0[/math].

Die Folge [math](y_m)_{m \in \mathbb{N}}[/math] konvergiert also von unten gegen [math]x_0[/math].


Weiter gilt:

[math]\phantom{=}\frac{f(y_m) - f(x_0)}{y_m - x_0} = \frac{\sum\limits_{n = 0}^{\infty}a^n\cos\left(b^n\pi y_m\right) - \sum\limits_{n = 0}^{\infty}a^n\cos\left(b^n\pi x_0\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{\infty} a^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = m}^{\infty} a^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} [/math].


Die erste Summe lässt sich nun mithilfe einer trigonometrischen Identität umformen; dann gilt:

[math]\phantom{=}\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)}\\ =\sum\limits_{n = 0}^{m - 1} \frac{-2(ab)^n }{b^n(y_m - x_0)}\sin\left(\frac{b^n\pi(y_m + x_0)}{2}\right)\sin\left(\frac{b^n\pi(y_m - x_0)}{2}\right) \\ = \sum\limits_{n = 0}^{m - 1}-\pi(ab)^n\sin\left(\frac{b^n\pi(y_m + x_0)}{2}\right)\frac{\sin\left(\frac{b^n\pi(y_m - x_0)}{2}\right)}{\frac{b^n\pi(y_m - x_0)}{2}} [/math].

Verwendet man nun die Dreiecks-Ungleichung und den Fakt, dass [math]\left|\frac{\sin(x)}{x}\right| \leq 1[/math] für alle [math]x \in \mathbb{R}\setminus\{0\}[/math], so ergibt sich weiter die Abschätzung:

[math]\phantom{=}\left|\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)}\right| \leq \sum\limits_{n = 0}^{m - 1}\pi (ab)^n = \pi\frac{(ab)^m - 1}{ab - 1} \lt \pi \frac{(ab)^m}{ab - 1}[/math].

Es existiert also ein [math]\epsilon \in (-1, 1)[/math], sodass [math]\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} = \epsilon \pi \frac{(ab)^m}{ab - 1}[/math].


Für die Terme in der zweiten Summe lassen sich folgende Vereinfachungen finden, wenn man beachtet, dass [math]b[/math] eine ungerade und [math]c_m[/math] eine beliebige ganze Zahl ist:

  • [math]\cos\left(b^{n + m}\pi y_m\right) = \cos\left(b^n\pi (c_m - 1)\right) = (-1)^{b^n (c_m - 1)} = (-1)^{c_m - 1} = -(-1)^{c_m}[/math]

Und mit dem trigonometrischen Additionstheorem für den Kosinus erhält man:

  • [math]\cos\left(b^{n + m}\pi x_0\right) = \cos\left(b^n\pi(x_m + c_m)\right) = \cos\left(b^n\pi x_m\right)\cos\left(b^n \pi c_m\right) - \sin\left(b^n \pi x_m\right)\sin\left(b^n \pi c_m\right) = (-1)^{b^n c_m}\cos\left(b^n \pi c_m\right) - 0 = (-1)^{c_m}\cos\left(b^n\pi c_m\right)[/math].


Damit ergibt sich:

[math]\phantom{=}\sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{-(-1)^{c_m} - (-1)^{c_m}\cos\left(b^n\pi x_m\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{\infty} a^{n + m}(-1)(-1)^{c_m} \frac{1 + \cos\left(b^n\pi x_m\right)}{-\frac{1 + x_m}{b^n}} \\ = (ab)^m(-1)^{c_m}\sum\limits_{n = 0}^{\infty} a^{n} \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m}. [/math]


Beachtet man, dass [math]x_m \in \left(-\frac{1}{2}, \frac{1}{2}\right][/math], so folgt, dass alle Terme der obigen Summe positiv sind. Lässt man alle Terme für [math]n \geq 1[/math] weg, so ergibt sich die Abschätzung:

[math]\phantom{=}\sum\limits_{n = 0}^{\infty} a^n \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} \geq \frac{1 + \cos\left(\pi x_m\right)}{1 + x_m} \geq \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}[/math],

es gibt also ein [math]\eta \geq 1[/math], sodass [math](ab)^m(-1)^{c_m}\sum\limits_{n = 0}^{\infty} a^{n} \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} = \frac{2}{3}(ab)^m(-1)^{c_m}\eta[/math].


Fügt man nun die Ausdrücke für beide Summen zusammen, so erhält man:

[math]\phantom{=}\frac{f(y_m) - f(x_0)}{y_m - x_0} = \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} = \epsilon\frac{\pi(ab)^m}{ab - 1} + \frac{2}{3}(ab)^m(-1)^{c_m}\eta = (-1)^{c_m}(ab)^m\eta\left(\frac{2}{3} + (-1)^{c_m}\frac{\epsilon}{\eta}\frac{\pi}{ab - 1}\right)[/math].


Erinnert man sich, dass [math]a[/math] und [math]b[/math] so gewählt wurden, dass [math]ab \gt 1 + \frac{3\pi}{2} \iff \frac{\pi}{ab - 1} = \frac{2}{3}[/math] und weiter [math]|\epsilon| \lt 1 [/math] und [math]\eta \geq 1[/math] gelten, so ergibt sich:

[math]\phantom{=}\frac{2}{3} + (-1)^{c_m}\frac{\epsilon}{\eta}\frac{\pi}{ab - 1} \gt \frac{2}{3} - \frac{\pi}{ab - 1} \gt 0[/math].


Insbesondere folgt:

[math]\phantom{=}\left|\frac{f(y_m) - f(x_0)}{y_m - x_0}\right| \gt (ab)^m\left(\frac{2}{3} - \frac{\pi}{ab - 1}\right) \rightarrow \infty[/math],

sodass [math]f[/math] nicht in [math]x_0[/math] differenzierbar sein kann. Da [math]x_0[/math] beliebig gewählt war, ist die Weierstraß-Funktion [math]f[/math] also nirgendwo differenzierbar.

Die modifizierte Dirichlet-Funktion (Verweise auf Quelle einfügen)

Eine weitere interessante Funktion, die das intuitive Verständnis der Stetigkeit herausfordert, ist die modifizierte Dirichlet-Funktion.

Diese ist definiert durch [math]g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \begin{cases}\frac{1}{q} & \text{für } x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q} \end{cases}[/math], sodass die Funktion folgende sonderbaren Eigenschaften hat:

  1. Sie ist in den rationalen Zahlen [math]\mathbb{Q}[/math] unstetig.
  2. Sie ist in den irrationalen Zahlen [math]\mathbb{R}\setminus\mathbb{Q}[/math] stetig.
Beweis der Unstetigkeit in den rationalen Zahlen
Wir zeigen zuerst die Unstetigkeit in den rationalen Zahlen.

Dafür sei [math]x \in \mathbb{Q}[/math] eine beliebige rationale Zahl, sowie [math]p \in \mathbb{Z}, q \in \mathbb{N}[/math] die (eindeutigen) teilerfremden ganzen Zahlen, sodass [math]x = \frac{p}{q}[/math]. Damit gilt dann: [math]g(x_0) = \frac{1}{q}[/math].

Sei nun [math]0 \lt \epsilon \leq \frac{1}{q}[/math]. Es ist bekannt, dass für jedes [math]\delta \in \mathbb{R}_{\gt 0}[/math] unendlich viele irrationale Zahlen in der Umgebung [math]U_\delta (x_0) = (x_0 - \delta, x_0 + \delta)[/math] liegen. Für eine beliebige irrationale Zahl [math]x \in U_\delta (x_0) \cap \mathbb{R}\setminus\mathbb{Q}[/math] gilt nun: [math]|f(x_0) - f(x)| = |\frac{1}{q} - 0| = \frac{1}{q} \geq \varepsilon[/math].

Da [math]\delta[/math] beliebig gewählt war, kann [math]g[/math] nicht stetig in [math]x_0[/math] sein. Da [math]x_0[/math] beliebig gewählt war, ist nirgendwo in [math]\mathbb{Q}[/math] stetig.

Beweis der Stetigkeit in den irrationalen Zahlen  
Nun zeigen wir, dass [math]g[/math] in den irrationalen Zahlen stetig ist.

Sei dafür [math]x \in \mathbb{R}\setminus\mathbb{Q}[/math] eine beliebige irrationale Zahl und [math]\varepsilon \gt 0[/math].

Nun setze man [math]\delta_1 = \varepsilon[/math]. Weiter bezeichne [math]M_{\delta_1} := \{y \in (x_0 - \delta_1, x_0 + \delta_1) | \varepsilon \leq |g(y) - g(x_0)| = |g(y)|\}[/math] die Menge aller Punkte im Intervall [math](x_0 - \delta_1, x_0 + \delta_1)[/math], die die Stetigkeitsungleichung [math]|g(y) - g(x_0)| \leq \varepsilon[/math] nicht erfüllen.

Per Konstruktion der Funktion [math]g[/math], gilt für die Menge [math]\mathbb{R}\setminus\mathbb{Q}[/math] der irrationalen Zahlen bereits, dass [math]g\left(\mathbb{R}\setminus\mathbb{Q}\right) \equiv 0[/math], also [math]M_{\delta_1} \subseteq \mathbb{Q}[/math].

Sei nun also [math]x = \frac{p}{q} \in M_{\delta_1} \subseteq \mathbb{Q}[/math]. Es gilt [math]\frac{1}{q} = g(x) = |g(x)| = |g(x) - g(x_0)| \geq \varepsilon[/math], also auch [math]q \leq \frac{1}{\varepsilon}[/math].

Da die Menge [math]N := \{n \in \mathbb{N} | n \leq \frac{1}{\varepsilon}\}[/math] offensichtlich endlich ist, können nur endlich viele Nenner [math]q_1, q_2, ..., q_n \in N[/math] in den (rationalen) Zahlen aus [math]M_{\delta_1}[/math] vorkommen. Da [math](x_0 - \delta_1, x_0 + \delta_1)[/math] beschränkt ist, können somit nur endlich viele rationale Zahlen mit Nennern [math]q_1, q_2, ..., q_n[/math] in [math](x_0 - \delta_1, x_0 + \delta_1)[/math] und somit in [math]M_{\delta_1}[/math] sein. Da [math]M_{\delta_1}[/math] in den rationalen Zahlen enthalten ist, ist [math]M_{\delta_1}[/math] somit endlich.

Es kann also ohne Probleme ein [math]0 \lt \delta_0 \leq \delta_1[/math] gefunden werden, sodass [math](x_0 - \delta_0, x_0 + \delta_0) \cap M_{\delta_1} = \emptyset[/math].

Per Konstruktion von [math]M_{\delta_1}[/math] und [math]\delta_0[/math] gilt nun insbesondere, dass [math]g((x_0 - \delta_0, x_0 + \delta_0)) \subseteq (g(x_0) - \varepsilon, g(x_0) + \varepsilon)[/math]. Da [math]\varepsilon[/math] beliebig gewählt war, ist [math]g[/math] in [math]x_0[/math] stetig. Da [math]x_0[/math] beliebig (aus den irrationalen Zahlen [math]\mathbb{R}\setminus\mathbb{Q}[/math]) gewählt war, ist [math]g[/math] in den irrationalen Zahlen [math]\mathbb{R}\setminus\mathbb{Q}[/math] stetig.

Die Cantor-Funktion

Die Cantor-Funktion [math]f: [0,1] \rightarrow [0,1][/math] ist ein Funktion, die auf der ebenso unintuitiven Cantor-Menge [math]C \subset [0,1][/math] aufbaut und folgende Eigenschaften besitzt:

  1. Sie ist monoton wachsend, beginnend bei [math]f(0) = 0[/math] und endend bei [math]f(1) = 1[/math].
  2. Sie ist in den Punkten [math][0,1] \setminus C[/math] differenzierbar und ihre Ableitung besitzt dort jeweils den Wert [math]0[/math].

Die Indikatorfunktion der rationalen Zahlen [math]\mathbb{Q}[/math] (Verweis einfügen)

Ein letztes Gegenbeispiel der Analysis ist die Indikatorfunktion [math]\chi_{\mathbb{Q}}: \mathbb{R} \rightarrow \{0,1\}, x \mapsto \begin{cases}1 & \text{für } x \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q}\end{cases}[/math] der rationalen Zahlen [math]\mathbb{Q}[/math] in den reellen Zahlen [math]\mathbb{R}[/math], welche die Unterschiedlichkeit der Lebesgue- und Riemann-Integrierbarkeit zeigt.

Denn für ebendiese Funktion [math]\chi_{\mathbb{Q}}[/math] lässt sich zeigen, dass sie:

  1. Lebesgue-integrierbar ist.
  2. nicht Riemann-integrierbar ist.
Beweis der Lebesgue-Integrierbarkeit  
Nach der Definition des Lebesgue-Integrals gilt bereits: [math]\int_\mathbb{R} \chi_\mathbb{Q} \mathrm{d}\mathbb{\lambda} = \mathbb{\lambda}\left(\mathbb{Q}\right) = 0[/math]. Insbesondere ist [math]\chi_\mathbb{Q}[/math] also Lebesque-integrierbar. Möglicherweise Verweis auf Elstrodt "Maß- und Integrationstheorie" einfügen.
Beweis der Nicht-Riemann-Integrierbarkeit  
Bekanntermaßen impliziert die Riemann-Integrierbarkeit einer Funktion [math]f[/math], dass sie der gleichmäßige Grenzwert einer Folge [math](t_n)_{n \in \mathbb{N}}[/math] von Treppenfunktionen ist, also [math]\lim\limits_{n \rightarrow \infty}\|f - t_n\|_\infty = \lim\limits_{n \rightarrow \infty}\sup\limits_{x \in \mathbb{R}}|f(x) - t_n(x)| = 0[/math] gilt. Verweis auf Prof. Kohnen angeben.

Betrachtet man nun die Funktion [math]f = \chi_\mathbb{Q}[/math], so sieht man schnell ein, dass diese kein gleichmäßiger Grenzwert von Treppenfunktionen sein kann, da für jede beliebige Treppenfunktion mit beliebigen Stützpunkten und beliebigen Werten zwischen diesen Stützpunkten immer [math]\lim\limits_{n \rightarrow \infty}\|\chi_\mathbb{Q} - t_n\|_\infty \geq \frac{1}{2} \neq 0[/math] gilt.

Dies liegt daran, dass in dem Intervall zwischen zwei Stützpunkten einer Treppenfunktion (auf dem die Treppenfunktion per Definition konstant einen Wert [math]w \in \mathbb{R}[/math] annimmt) jeweils eine rationale Zahl [math]x \in \mathbb{Q}[/math] und eine irrationale Zahl [math]y \in \mathbb{R}\setminus\mathbb{Q}[/math] mit [math]\chi_\mathbb{Q}(x) = 1[/math] und [math]\chi_\mathbb{Q}(y) = 0[/math] liegen. Offensichtlich gilt nun [math]max\{|\chi_\mathbb{Q}(x) - w|, |\chi_\mathbb{Q}(y) - w|\} \geq \frac{1}{2}[/math].