Benutzer:Jan Agatz

Aus FunFacts Wiki
Version vom 1. April 2021, 11:48 Uhr von Jan Agatz (Diskussion | Beiträge) (Beweis der Eigenschaft der Weierstraß-Funktion 3 hinzugefügt.)
Zur Navigation springen Zur Suche springen

Willkommen auf meiner Benutzerseite für das Wiki-Projekt "Fun Facts" der Uni Heidelberg!

Hier findet sich ein Prototyp meines Teiles des Wiki-Artikels Gegenbeispiele der Funktionentheorie und Analysis.

Motivation

Die Untersuchung von Gegenbeispielen lässt sich u.a. durch folgende drei Punkte motivieren:

  • Gegenbeispiele können naheliegende und intuitiv richtige Aussage, die tatsächlich nicht gelten, widerlegen. So zeigt die Weierstraß-Funktion (Intralink einfügen), dass Stetigkeit auf einem Intervall nicht Differenzierbarkeit in (irgend-)einem Punkt implizieren muss.
  • Weiter können diese beweisen, dass zwei Definitionen verschieden sind, und, je nach Situation, möglicherweise auch wodrin diese Unterschiede liegen. So zeigt die Indikatorfunktion der rationalen Zahlen (in den reellen Zahlen), die Lebesgue-integrierbar, aber nicht Riemann-integrierbar ist, dass diese beiden Definition der Integrierbarkeit/ des Integrals nicht zusammenfallen können.
  • Schließlich zeigen Gegenbeispiele, zu einer bestimmten Aussage, meist pathologische Sonderfälle auf, die durch geschickte Wahl der Definition und Voraussetzung der Aussage ausgeschlossen werden können.

Gegenbeispiele der Analysis

Neben der Funktionentheorie und der Topologie lassen sich auch in der Analysis viele Gegenbeispiele finden.

Die Weierstraß-Funktion

Die Weierstraß-Funktion [math]f:\mathbb{R} \rightarrow \mathbb{R}[/math] ist eine stetige Funktion, die in keinem Punkt differenzierbar ist. Zur Definition wähle man [math]a \in (0,1)[/math] und [math]b \in \mathbb{N}[/math] ungrade, sodass [math]ab \gt 1 + \frac{3\pi}{2}[/math]. Dann ist die Weierstraß-Funktion durch

[math]f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sum\limits_{n = 0}^{\infty} a^n \cos\left(b^n \pi x\right)[/math]

gegeben. Nun zeigen wir, dass

  1. die Weierstraß-Funktion [math]f[/math] stetig ist.
  2. die Weierstraß-Funktion [math]f[/math] in keinem Punkt differenzierbar ist.

Beweis der Aussage 1

Man betrachte die Weierstraß-Funktion als Funktionenreihe der Funktionen [math]\left(f_n: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto a^n \cos\left(b^n\pi x\right)\right)_{n \in \mathbb{N}}[/math], die jeweils stetig in [math]x[/math] sind und der Abschätzung [math]|a^n \cos\left(b^n\pi x\right)| \leq |a^n| \leq a^n[/math] genügen.

Als geometrische Reihe konvergiert [math]\sum\limits_{n = 0}^{\infty} a^n = \frac{1}{1 - a}[/math], wodurch mit dem Majorantensatz von Weierstraß die Funktionenreihe [math]\sum\limits_{n = 0}^{\infty} a^n\cos\left(b^n\pi x\right)[/math] gleichmäßig auf [math]\mathbb{R}[/math] konvergiert.

Nimmt man beide obigen Aussagen zusammen, so folgt bereits, dass die Weierstraß-Funktion als gleichmäßig konvergente Funktionsreihe stetiger Funktionen selbst stetig ist.

Beweis der Aussage 2 Sei nun [math]x_0 \in \mathbb{R}[/math] ein beliebiger Punkt. Um zu zeigen, dass in diesem Punkt die Ableitung der Weierstraß-Funktion, also der Grenzwert [math]\lim\limits_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}[/math], nicht exisistiert, reicht es eine Folgen zu finden, die gegen [math]x_0[/math] konvergieren, während der Differenzenquotient nicht konvergiert.

Man wähle nun für jedes [math]m \in \mathbb{N}[/math] die eindeutige ganze Zahl [math]c_m \in \mathbb{Z}[/math], sodass [math]b^m x_0 - c_m \in \left(-\frac{1}{2}, \frac{1}{2}\right][/math] gilt. Weiter definiere man für jedes [math]m \in \mathbb{N}[/math] die reellen Zahlen [math]x_m := b^m x_0 - c_m[/math] und [math]y_m := \frac{c_m - 1}{b^m}[/math]. Für diese gelten die Ungleichungen

[math]y_m - x_0 = - \frac{1 + x_m}{b^m} \lt 0 [/math],

also [math]y_m \lt x_0[/math]. Insbesondere gilt nun:

  • [math]\lim\limits_{m \to \infty} |y_m - x_0| = \lim\limits_{m \to \infty} x_0 - y_m = \lim\limits_{m \to \infty} \frac{1 + x_m}{b^m} = 0[/math]

Die Folge [math](y_m)_{m \in \mathbb{N}}[/math] konvergiert also von unten gegen [math]x_0[/math]. Weiter gilt: [math]\frac{f(y_m) - f(x_0)}{y_m - x_0} = \frac{\sum\limits_{n = 0}^{\infty}a^n\cos\left(b^n\pi y_m\right) - \sum\limits_{n = 0}^{\infty}a^n\cos\left(b^n\pi x_0\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{\infty} a^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = m}^{\infty} a^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} [/math].

Die erste Summe lässt sich nun mithilfe einer trigonometrischen Identität (Verweis einfügen) umformen; dann gilt: [math]\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)}\\ =\sum\limits_{n = 0}^{m - 1} \frac{-2(ab)^n }{b^n(y_m - x_0)}\sin\left(\frac{b^n\pi(y_m + x_0)}{2}\right)\sin\left(\frac{b^n\pi(y_m - x_0)}{2}\right) \\ = \sum\limits_{n = 0}^{m - 1}-\pi(ab)^n\sin\left(\frac{b^n\pi(y_m + x_0)}{2}\right)\frac{\sin\left(\frac{b^n\pi(y_m - x_0)}{2}\right)}{\frac{b^n\pi(y_m - x_0)}{2}} [/math].

Verwendet man nun die Dreiecks-Ungleichung und den Fakt, dass [math]\left|\frac{\sin(x)}{x}\right| \leq |\cos(x)| \leq 1[/math] für alle [math]x \in \mathbb{R}\setminus\{0\}[/math], so ergibt sich weiter die Abschätzung [math]\left|\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)}\right| \\ \leq \sum\limits_{n = 0}^{m - 1}\pi (ab)^n = \pi\frac{(ab)^m - 1}{ab - 1} \lt \pi \frac{(ab)^m}{ab - 1}[/math].

Es existiert also ein [math]\epsilon_1 \in (-1, 1)[/math], sodass [math]\sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} = \epsilon_1 \pi \frac{(ab)^m}{ab - 1}[/math].

Für die Terme in der zweiten Summe lassen sich folgende Vereinfachungen finden, wenn man beachtet, dass [math]b[/math] eine ungerade und [math]c_m[/math] eine beliebige natürliche Zahl ist:

  • [math]\cos\left(b^{n + m}\pi y_m\right) = \cos\left(b^n\pi (c_m - 1)\right) = (-1)^{b^n (c_m - 1)} = (-1)^{c_m - 1} = -(-1)^{c_m}[/math]

Und mit einem der trigonometrischen Additionstheoremen erhält man:

  • [math]\cos\left(b^{n + m}\pi x_0\right) = \cos\left(b^n\pi(x_m + c_m)\right) = \cos\left(b^n\pi x_m\right)\cos\left(b^n \pi c_m\right) - \sin\left(b^n \pi x_m\right)\sin\left(b^n \pi c_m\right) \\ = (-1)^{b^n c_m}\cos\left(b^n \pi c_m\right) - 0 = (-1)^{c_m}\cos\left(b^n\pi c_m\right)[/math].

Damit ergibt sich: [math]\sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{-(-1)^{c_m} - (-1)^{c_m}\cos\left(b^n\pi x_m\right)}{y_m - x_0} \\ = \sum\limits_{n = 0}^{\infty} a^{n + m}(-1)(-1)^{c_m} \frac{1 + \cos\left(b^n\pi x_m\right)}{-\frac{1 + x_m}{b^n}} \\ = (ab)^m(-1)^{c_m}\sum\limits_{n = 0}^{\infty} a^{n} \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} [/math] Beachtet man, dass [math]x_m \in \left(-\frac{1}{2}, \frac{1}{2}\right][/math], so ergibt sich, dass alle Terme der obigen Summe positiv sind. Lässt man alle Terme für [math]n \geq 1[/math] weg, so ergibt sich die Abschätzung:

[math]\sum\limits_{n = 0}^{\infty} a^n \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} \geq \frac{1 + \cos\left(\pi x_m\right)}{1 + x_m} \geq \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}[/math],

es gibt also ein [math]\eta \geq 1[/math], sodass [math](ab)^m(-1)^{c_m}\sum\limits_{n = 0}^{\infty} a^{n} \frac{1 + \cos\left(b^n\pi x_m\right)}{1 + x_m} = \frac{2}{3}(ab)^m(-1)^{c_m}\eta[/math].

Fügt man nun die Ausdrücke für beide Summen zusammen, so erhält man:

[math]\frac{f(y_m) - f(x_0)}{y_m - x_0} = \sum\limits_{n = 0}^{m - 1} (ab)^n \frac{\cos\left(b^n\pi y_m\right) - \cos\left(b^n\pi x_0\right)}{b^n(y_m - x_0)} + \sum\limits_{n = 0}^{\infty} a^{n + m} \frac{\cos\left(b^{n + m}\pi y_m\right) - \cos\left(b^{n + m}\pi x_0\right)}{y_m - x_0} = \epsilon\frac{\pi(ab)^m}{ab - 1} + \frac{2}{3}(ab)^m(-1)^{c_m}\eta = (-1)^{c_m}(ab)^m\eta\left(\frac{2}{3} + (-1)^{c_m}\frac{\epsilon}{\eta}\frac{\pi}{ab - 1}\right)[/math]

Erinnert man sich, dass [math]a[/math] und [math]b[/math] so gewählt wurden, dass [math]ab \gt 1 + \frac{3\pi}{2} \iff\frac{\pi}{ab - 1} = \frac{2}{3}[/math] und weiter [math]|epsilon| \lt 1 [/math] und [math]\eta \geq 1[/math] gilt, so ergibt sich:

[math]\frac{2}{3} + (-1)^{c_m}\frac{\epsilon}{\eta}\frac{\pi}{ab - 1} \gt \frac{2}{3} - \frac{\pi}{ab - 1} \gt 0[/math].

Insbesondere ergibt sich also:

[math]\left|\frac{f(y_m) - f(x_0)}{y_m - x_0}\right| \gt (ab)^m\left(\frac{2}{3} - \frac{\pi}{ab - 1}\right) \rightarrow \infty[/math],

sodass [math]f[/math] nicht in [math]x_0[/math] differenzierbar sein kann. Da [math]x_0[/math] beliebig gewählt war, ist die Weierstraß-Funktion [math]f[/math] also nirgendwo differenzierbar.

Die modifizierte Dirichlet-Funktion

Eine weitere interessante Funktion, die das intuitive Verständnis der Stetigkeit herausfordert, ist die modifizierte Dirichlet-Funktion, gegeben durch [math]g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \begin{cases}\frac{1}{q} & \text{für } x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q} \end{cases}[/math], welche in den rationalen Zahlen [math]\mathbb{Q}[/math] unstetig und in den irrationalen Zahlen [math]\mathbb{R}\setminus\mathbb{Q}[/math] stetig ist.

Beweis Wir zeigen zuerst die Unstetigkeit in den rationalen Zahlen. Dafür sei [math]x \in \mathbb{Q}[/math] eine beliebige rationale Zahl, sowie [math]p \in \mathbb{Z}, q \in \mathbb{N}[/math] die (eindeutigen) teilerfremden Zahlen, sodass [math]x = \frac{p}{q}[/math]. Damit gilt dann: [math]g(x_0) = \frac{1}{q}[/math].

Sei nun [math]0 \lt \epsilon \leq \frac{1}{q}[/math]. Es ist bekannt, dass für jedes [math]\delta \in \mathbb{R}_{\gt 0}[/math] unendlich viele (und damit auch mindestens eine) irrationale Zahlen in der Umgebung [math]U_\delta (x_0) = (x_0 - \delta, x_0 + \delta)[/math] liegen. Für eine beliebige irrationale Zahl [math]x \in U_\delta (x_0) \cap \mathbb{R}\setminus\mathbb{Q}[/math] gilt nun: [math]|f(x_0) - f(x)| = |\frac{1}{q} - 0| = \frac{1}{q} \geq \varepsilon[/math].

Da [math]\delta[/math] beliebig gewählt war, kann [math]g[/math] nicht stetig in [math]x_0[/math] sein. Da [math]x_0[/math] beliebig gewählt war, ist nirgendwo in [math]\mathbb{Q}[/math] stetig.

Nun zeigen wir, dass [math]g[/math] in den irrationalen Zahlen stetig ist. Sei dafür [math]x \in \mathbb{R}\setminus\mathbb{Q}[/math] eine beliebige irrationale Zahl und [math]\varepsilon \gt 0[/math]. Nun setze man [math]\delta_1 = \varepsilon[/math]. Weiter bezeichne [math]M_{\delta_1} := \{y \in (x_0 - \delta_1, x_0 + \delta_1) | |g(y)| = |g(y) - g(x_0)| \geq \varepsilon\}[/math] die Menge aller Punkte im Intervall [math](x_0 - \delta_1, x_0 + \delta_1)[/math], die "Stetigkeitsungleichung" [math]|g(y) - g(x_0)| \geq \varepsilon[/math] nicht erfüllen.

Per Konstruktion der Funktion [math]g[/math], gilt für die Menge [math]\mathbb{R}\setminus\mathbb{Q}[/math] der irrationalen Zahlen bereits, dass [math]g\left(\mathbb{R}\setminus\mathbb{Q}\right) \equiv 0[/math], also [math]M_{\delta_1} \subseteq \mathbb{Q}[/math]. Sei nun also [math]x = \frac{p}{q} \in M_{\delta_1} \subseteq \mathbb{Q}[/math]. Nun gilt [math]\frac{1}{q} = g(x) = |g(x)| = |g(x) - g(x_0)| \geq \varepsilon[/math], also auch [math]q \leq \frac{1}{\varepsilon}[/math]. Da die Menge [math]N := \{n \in \mathbb{N} | n \leq \frac{1}{\varepsilon}\}[/math] offensichtlich endlich ist, können nur endlich viele Nenner [math]q_1, q_2, ..., q_n \in N[/math] in den (rationalen) Zahlen aus [math]M_{\delta_1}[/math] vorkommen. Da [math](x_0 - \delta_1, x_0 + \delta_1)[/math] beschränkt ist, können somit nur endlich viele rationale Zahlen mit Nennern [math]q_1, q_2, ..., q_n[/math] in [math](x_0 - \delta_1, x_0 + \delta_1)[/math] und somit in [math]M_{\delta_1}[/math] sein. Da [math]M_{\delta_1}[/math] in den rationalen Zahlen enthalten ist, ist [math]M_{\delta_1}[/math] somit endlich. Es kann also ohne Probleme ein [math]0 \lt \delta_0 \leq \delta_1[/math] gefunden werden, sodass [math](x_0 - \delta_0, x_0 + \delta_0) \cap M_{\delta_1} = \emptyset[/math].

Per Konstruktion von [math]M_{\delta_1}[/math] und [math]\delta_0[/math] gilt nun insbesondere, dass [math]g((x_0 - \delta_0, x_0 + \delta_0)) \subseteq (g(x_0) - \varepsilon, g(x_0) + \varepsilon)[/math]. Da [math]\varepsilon[/math] beliebig gewählt war, ist [math]g[/math] in [math]x_0[/math] stetig. Da [math]x_0[/math] beliebig (aus den irrationalen Zahlen [math]\mathbb{R}\setminus\mathbb{Q}[/math]) gewählt war, ist [math]g[/math] in den irrationalen Zahlen [math]\mathbb{R}\setminus\mathbb{Q}[/math] stetig.

Die Cantor-Funktion

Die Cantor-Funktion [math]f: [0,1] \rightarrow [0,1][/math] ist Funktion, die auf der ebenso unintuitiven Cantor-Menge [math]C \subset [0,1][/math] aufbaut und folgende Eigenschaften besitzt:

  1. Sie ist monoton wachsend, beginnend mit [math]f(0) = 0[/math] und endend mit [math]f(1) = 1[/math].
  2. Sie ist in den Punkten [math][0,1] \setminus C[/math] differenzierbar und ihre Ableitung besitzt dort jeweils den Wert [math]0[/math].

Die Indikatorfunktion der rationalen Zahlen [math]\mathbb{Q}[/math]

Ein letztes Gegenbeispiel der Analysis, welches bereits in dem Abschnitt "Motivation" angesprochen wurde, ist die Indikatorfunktion [math]\chi_{\mathbb{Q}}: \mathbb{R} \rightarrow \{0,1\}, x \mapsto \begin{cases}1 & \text{für } x \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R}\setminus\mathbb{Q}\end{cases}[/math] der rationalen Zahlen [math]\mathbb{Q}[/math] in den reellen Zahlen [math]\mathbb{R}[/math], welche die Unterschiedlichkeit der Lebesgue- und Riemann-Integrierbarkeit zeigt.

Den für ebendiese Funktion [math]\chi_{\mathbb{Q}}[/math] lässt sich zeigen, dass sie:

  1. Lebesgue-integrierbar ist.
  2. nicht Riemann-integrierbar ist.

Beweis der Lebesgue-Integrierbarkeit: Nach der Definition des Lebesgue-Integrals gilt bereits: [math]\int_\mathbb{R} \chi_\mathbb{Q} \mathrm{d}\mathbb{\lambda} = \mathbb{\lambda}\left(\mathbb{Q}\right) = 0[/math]. Insbesondere ist [math]\chi_\mathbb{Q}[/math] also Lebesque-integrierbar.

Beweis der Riemann-Integrierbarkeit Bekanntermaßen impliziert die Riemann-Integrierbarkeit einer Funktion [math]f[/math], dass sie der gleichmäßige Grenzwert einer Folge [math](t_n)_{n \in \mathbb{N}}[/math] von Treppenfunktion ist, also [math]\lim\limits_{n \rightarrow \infty}\|f - t_n\|_\infty = \lim\limits_{n \rightarrow \infty}\sup\limits_{x \in \mathbb{R}}|f(x) - t_n(x)| = 0[/math] gilt.

Betrachtet man nun die Funktion [math]f = \chi_\mathbb{Q}[/math], so sieht man schnell ein, dass diese kein gleichmäßiger Grenzwert von Treppenfunktionen seien kann, da für jede beliebige Treppenfunktion mit beliebigen Stützpunkten und beliebigen Werten zwischen diesen Stützpunkten immer [math]\lim\limits_{n \rightarrow \infty}\|\chi_\mathbb{Q} - t_n\|_\infty \geq \frac{1}{2} \neq 0[/math]. Denn in dem Intervall zwischen je zwei Stützpunkten einer Treppenfunktion (auf dem die Treppenfunktion per Definition konstant einen Wert [math]w \in \mathbb{R}[/math] annimmt) liegen (jeweils unendlich viele, also auch jeweils mindestens eine) rationale Zahl [math]x \in \mathbb{Q}[/math] und eine irrationale Zahl [math]y \in \mathbb{R}\setminus\mathbb{Q}[/math] mit [math]\chi_\mathbb{Q}(x) = 1[/math] und [math]\chi_\mathbb{Q}(y) = 0[/math]. Offensichtlich gilt nun [math]max\{|\chi_\mathbb{Q}(x) - w|, |\chi_\mathbb{Q}(y) - w|\} \geq \frac{1}{2}[/math]. (Satzstruktur verbessern)