Zauberhafte Invarianten: Unterschied zwischen den Versionen
Jörn (Diskussion | Beiträge) K (→Handlung 3) |
Jörn (Diskussion | Beiträge) |
||
Zeile 60: | Zeile 60: | ||
=== Eigenschaften der Abbildungen === | === Eigenschaften der Abbildungen === | ||
− | Die | + | Die Menge dieser Abbildungen nennen wir <math>\mathcal{G} |
</math>. | </math>. | ||
Zeile 71: | Zeile 71: | ||
Nennen wir diese Menge <math>\mathcal{G}_{\epsilon} | Nennen wir diese Menge <math>\mathcal{G}_{\epsilon} | ||
</math>. | </math>. | ||
+ | |||
+ | === Satz (Gruppe der Abbildungen)=== | ||
+ | |||
+ | <math (G, \circ) </math>ist eine Gruppe und <math (G_\epsilon, \circ) </math>ist eine Untergruppe. | ||
=== Handlung 1 (Abheben) === | === Handlung 1 (Abheben) === |
Version vom 19. März 2021, 16:17 Uhr
Zaubertricks
Platzhalter Video 2 & 3
Was sind Invarianten?
Definition
Eine Invariante ist eine Eigenschaft, die bei einer bestimmten Operation nicht verändert wird.
Beispiele
- Die Eigenschaft eine gerade Zahl zu sein ist eine Invariante unter der Multiplikation mit beliebigen ganzen Zahlen
- Linearität einer Abbildung ist eine Invariante unter Komposition von Abbildungen
Was bringen uns Invarianten in der Zauberei?
Bei einem Kartentrick können wir uns Invarianten zu nutze machen, indem wir beim durcheinander bringen des Kartenstapels nur Operationen nutzen, die gewünschte Eigenschaften unverändert lassen.
So können wir erreichen, dass eine Eigenschaft trotz des Mischens nicht verloren geht. Eine solche Eigenschaft könnte etwa sein, dass die roten und schwarzen Karten in verschiedene Richtungen zeigen.
Natürlich darf es nicht zu offensichtlich und einfach sein, da sonst der Effekt des Zauberns verloren geht.
Die Mathematik hinter dem Zaubern
Notation
Sei [math]n \in \mathbb{N}[/math] die Anzahl der roten und der schwarzen Karten. Der Stapel besteht also aus [math] 2n [/math] Karten. Es ist erlaubt, dass einige Karten umgedreht sind, dieser Zustand wird wie folgt geschrieben: [math]r[/math] ist eine rote Karte und [math]-r[/math] ist eine umgedrehte rote Karte. Analog bei schwarzen Karten, die mit [math]s[/math] bezeichnet werden.
Der ganze Stapel wird beschrieben durch eine Folge [math](x_1,x_2,\dots,x_{2n})[/math], wobei [math]x_i \in \{r,-r,s,-s\}\ \forall i \in \{1,\dots,2n\}[/math]. Die Menge dieser Folgen sei [math]\Delta_{2n}[/math], sie hat offensichtlich [math]4^{2n}[/math] Elemente.
Beispiel
Definition
Ein [math](x_1,\dots,x_{2n}) \in \Delta_{2n}[/math] erfüllt die Eigenschaft [math]\epsilon[/math], wenn für ein [math](x_1,\dots,x_{2n}) \in \Delta_{2n, \epsilon}[/math] gilt: [math]x_2, x_4, x_6, \dots \in \{r,-s\}[/math] und [math]x_1, x_3, x_5, \dots \in \{-r,s\}[/math] oder umgekehrt.
D.h. das umdrehen jeder zweiten Karte bewirkt, dass rote und schwarze Karten in verschiedene Richtungen zeigen. Die Menge der Folgen mit [math]\epsilon[/math] bezeichnen wir mit [math]\Delta_{2n, \epsilon}[/math].
Beispiele
- [math](r,s,r,s,r,s,r,s)[/math]
- [math](s,r,s,r,s,r,s,r)[/math]
- [math](s,-s,-r,r,s,-s,-r,r)[/math]
Zugelassene Handlungen
Wir wollen nun Handlungen finden, die die Eigenschaften [math]\epsilon[/math] beibehält.
Diese Handlungen sollen sein:
- Reihenfolge verändern
- Karten umdrehen
- Vorschriften sollen für alle Folgen die gleichen sein
Diese Handlungen "verpacken" wir in Abbildungen [math]\Phi [/math] auf [math]\Delta_{2n, \epsilon}[/math].
Beispiele
- [math] \phi(x_1,\dots, x_{2n}) := (x_1, -x_2, x_3, -x_4,\dots, x_{2n-1}, -x_{2n} )[/math] z.B, ist [math] \phi(s,r,s,r,s,r,s,r) = (s,-r,s,-r,s,-r,s,-r) [/math]
- [math] \phi(x_1,\dots, x_{2n}) := (x_{2n}, \dots, x_1) [/math] z.B. [math] \phi(s,r,s,r,s,r,s,r) = (r,s,r,s,r,s,r,s) [/math]
Eigenschaften der Abbildungen
Die Menge dieser Abbildungen nennen wir [math]\mathcal{G} [/math].
Nun wollen wir wissen für welche [math]\Phi \in \mathcal{G} [/math] gilt, dass für eine Folge [math](x_1,\dots,x_{2n}) \in \Delta_{2n, \epsilon}[/math] auch gilt [math]\phi((x_1,\dots,x_{2n})) \in \Delta_{2n, \epsilon}[/math].
Also welche [math]\Phi \in \mathcal{G} [/math] [math]\Delta_{2n, \epsilon}[/math] invariant lassen.
Nennen wir diese Menge [math]\mathcal{G}_{\epsilon} [/math].
Satz (Gruppe der Abbildungen)
[math]ist eine Gruppe und \lt math (G_\epsilon, \circ) [/math]ist eine Untergruppe.
Handlung 1 (Abheben)
Sei [math]1 \leq k \leq 2n [/math]. Wir bezeichnen die erste Handlung mit [math]\mathcal{A} _k [/math] und definieren so
[math]\mathcal{A} _k((x_1,\dots,x_{2n})) :=(x_{k+1},\dots,x_{2n},x_1,\dots,x_{k}) [/math].
In Worten: [math]\mathcal{A} _k [/math] stellt das Abheben von k Karten dar, die anschließend wieder unter den Stapel gelegt werden.
Diese Handlung ist in [math]\mathcal{G}_{\epsilon} [/math].
Beweis |
---|
Sei [math](x_1,\dots,x_{2n}) \in \Delta_{2n, \epsilon}[/math] und [math](y_1,\dots,y_{2n}) := \mathcal{A} _k((x_1,\dots,x_{2n})) [/math].
Es können vier verschiedene Fälle auftreten. Fall 1:
Da [math]k [/math] gerade, liegen nach der Durchführung von [math]\mathcal{A} _k [/math] die Karten die vorher an gerader Position lagen, wieder an gerader Position. Somit gilt, dass [math]y_2,y_4,y_6,... \in \{ r, -s\} [/math] und [math]y_1,y_3,y_5,... \in \{-r, s\} [/math]. Und damit [math](y_1,\dots,y_{2n}) \in \Delta_{2n, \epsilon} [/math]. Fall 2:
Da [math]k [/math] gerade, liegen nach der Durchführung von [math]\mathcal{A} _k [/math] die Karten die vorher an gerader Position lagen, wieder an gerader Position. Somit gilt, dass [math]y_2,y_4,y_6,... \in \{ -r, s\} [/math] und [math]y_1,y_3,y_5,... \in \{r, -s\} [/math]. Und damit [math](y_1,\dots,y_{2n}) \in \Delta_{2n, \epsilon} [/math]. Fall 3:
Da [math]k [/math] gerade, liegen nach der Durchführung von [math]\mathcal{A} _k [/math] die Karten die vorher an gerader Position lagen, jetzt an ungerader Position. Somit gilt, dass [math]y_2,y_4,y_6,... \in \{ -r, s\} [/math] und [math]y_1,y_3,y_5,... \in \{r, -s\} [/math]. Und damit [math](y_1,\dots,y_{2n}) \in \Delta_{2n, \epsilon} [/math]. Fall 4:
Da [math]k [/math] gerade, liegen nach der Durchführung von [math]\mathcal{A} _k [/math] die Karten die vorher an gerader Position lagen, jetzt an ungerader Position. Somit gilt, dass [math]y_2,y_4,y_6,... \in \{ r, -s\} [/math] und [math]y_1,y_3,y_5,... \in \{-r, s\} [/math]. Und damit [math](y_1,\dots,y_{2n}) \in \Delta_{2n, \epsilon} [/math]. |
Handlung 2 (Umdrehen)
Sei [math]1 \leq 2l \leq 2n [/math] mit [math]2l [/math] gerade. Wir bezeichnen die zweite Handlung mit [math]\mathcal{U} _{2l} [/math] und definieren so
[math]\mathcal{U} _{2l}((x_1,\dots,x_{2n})) :=(-x_{2l},-x_{2l-1},...,-x_{1},x_{2l+1},...,x_{2n}) [/math].
In Worten: [math]\mathcal{U} _{2l} [/math] stellt das Umdrehen des oberen Stapels mit 2l Karten dar, die anschließend wieder auf den Stapel gelegt werden.
Diese Handlung ist in [math]\mathcal{G}_{\epsilon} [/math].
Beweis |
---|
Sei [math](x_1,\dots,x_{2n}) \in \Delta_{2n,\epsilon} [/math] beliebig.
Damit gibt es zwei Fälle: Fall 1:[math] x_1,x_3,x_5,\dots,x_{2n-1} \in \{r,-s\}[/math] und [math] x_2,x_4,x_6,\dots,x_{2n} \in \{-r,s\}[/math]. Betrachte [math] \mathcal{U} _{2l}((x_1,\dots,x_{2n})) [/math] an einer beliebigen Stelle [math] 2r [/math], [math] r \in \mathbb{N} [/math]. Ist [math]2r \gt 2l [/math], so stimmen [math] \mathcal{U} _{2l}((x_1,\dots,x_{2n})) [/math] mit [math] (x_1,\dots,x_{2n}) [/math] dort überein. Damit ist also ist das Element an dieser Stelle in [math] \{r,-s\} [/math]. Ist jedoch [math] 2r \ge 2l [/math], so wird es an eine ungerade Stelle verschoben und umgedreht. War es vorher in [math] \{-r,s\} [/math] liegt es jetzt also in [math] \{-r,s\} [/math]. Somit ist [math] \mathcal{U} _{2l}((x_1,\dots,x_{2n})) \in \Delta_{2n,\epsilon} [/math]. Fall 2:[math] x_1,x_3,x_5,\dots,x_{2n-1} \in \{-r,s\} [/math] und [math] x_2,x_4,x_6,\dots,x_{2n} \in \{r,-s\} [/math]. Analog zu Fall 1. Also ist [math] \mathcal{U} _{2l} \in \mathcal{G}_{\epsilon} [/math]. |
Handlung 3
Seien [math] r[/math], [math] 2l [/math] Zahlen, so dass [math] 1 \leq r \lt r \lt r + 2l \leq 2n [/math]. Wir bezeichnen die dritte Handlung mit [math] \mathcal{U}_{r,2l} [/math] und definieren so
[math] \mathcal{U}_{r,2l}(x_1, ..., x_{2n}) := (x_1, ... , x_{r},-x_{r+2l}, -x_{r+2l-1}, ... , -x_{r+1}, x_{2l+1}, ... , x_{2n}) [/math].[1]
In Worten: Die ersten [math] r [/math] Karten werden unverändert gelassen, die nächsten [math] 2l [/math] Karten alle umgedreht und ihre Reihenfolge invertiert. Die restlichen Karten werden unverändert gelassen.
Diese Handlung ist in [math]\mathcal{G}_{\epsilon} [/math].[1]
Beweis[1] |
---|
Wir wissen bereits, dass [math] \mathcal{A}_k \text{ und } \mathcal{U}_2l \text{ in } \mathcal{G}_{\epsilon} [/math] sind. Wenn wir uns die Beschreibung in Worten anschauen wird schnell klar, dass [math] \mathcal{U}_{r,2l} [/math] als Hintereinanderausfürhung dieser geschrieben werden kann: [math] \mathcal{U}_{r,2l} = \mathcal{A}_2l \circ \mathcal{U}_2l \circ \mathcal{A}_r[/math]
Da [math] \mathcal{G}_\epsilon [/math] eine Untergruppe von [math] \mathcal{G} [/math] ist, ist [math] \mathcal{U}_{r,2l} [/math] damit auch in [math] \mathcal{G}_\epsilon [/math] . |
Handlung 4 (Invertieren)
Invertieren [math] I [/math] ist definiert durch
[math] I(x_1, ... , x_{2n}):= (x_{2n}, ... , x_1)[/math],
und ist ein Element von [math]\mathcal{G}_{\epsilon} [/math].[1]
Beweis[1] |
---|
Das Umkehren der Reihenfolge bewirkt, dass alle Elemente die vorher an gerader Stelle nun an ungerader Stelle sind und umgekehrt. Damit bleibt die Eigenschaft [math] \epsilon [/math] erhalten und [math] I(x_1, ... , x_{2n}) [/math] ist damit in [math]\Delta_{2n,\epsilon} [/math] |